Module 2 overview

lecture lab
1. Introduction to the module 1. Start-up protein eng.
2. Rational protein design 2. Site-directed mutagenesis
3. Fluorescence and sensors 3. DNA amplification
SPRING BREAK
4. Protein expression 4. Prepare expression system
5. Purification and protein analysis 5. Induce protein
6. Binding & affinity measurements 6. Characterize expression
7. High throughput engineering 7. Assess protein function



Lecture 2: Rational protein design

“Blob-level” protein design
A. Engineered fusion proteins

B. Knowledge required for blob-level engineering

Protein engineering at high resolution
A. Modifying existing proteins
B. De novo protein engineering

C. Knowledge needed for high-resolution design
D. Computational modeling



Rational protein design: “Irrational” high throughput
protein engineering:
Knowldege-based, deterministic

engineering of proteins with Selection for desired properties
novel characteristics from libraries of random variants

design/modeling
(often computer-aided)

¢

generate required
DNA constructs

¢

express proteins

¢

purify proteins

¢

assess proteins for
desired characteristics




“Blob-level” protein design

- Basic idea is to combine protein units of defined function (domains) to
engineer a fusion protein with novel functionality

- Examples include sensors, signal transduction components,
transcription factors, therapeutics, etc.
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note: “blob-level” design is not a technical term...



GFP-based approaches extend to other sensors:
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Ting et al. (2001) Proc. Natl. Acad. Sci. USA 98: 15003-8

Can you think of other sensors one could construct
based on this design strategy?



An early “synthetic biology” project—signal transduction triggered by a
small molecule dimerizing agent:

it a i 2 F L CALLE SRl Attt ittt Gt dd bt bt b b d

Tyrosine Kinases

PKC,
Calcineurin <g¢=Ca’*<@— PLC yl —# DAG — MAPK

Spencer et al. (1993) Science 262: 1019-24



Engineered antibodies as therapeutic agents:

single-chain “nanobodies”
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What knowledge is required for “blob-level” protein engineering?:
* rough geometry of protein domains (low resolution structure)
- secondary structure, if insertions or disruptions are planned
- desired linker properties (length, flexibility, hydrophilicity)

Example: CaM-based calcium sensors o
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What we’ve called “blob-level” design is useful for combining
functionalities associated with individual protein domains—but what if
we want to create new functionalities or make subtle manipulations?
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Rational protein engineering “at high resolution”

- Alter/tune properties of proteins by making structurally or
computationally informed changes at the amino acid level

- In some cases, produce entirely new proteins based on predictions of
structure and function from amino acid sequence

 Can be “rational” when combined with structural information and/or
computational modeling approaches

« Can be “irrational” when combined with high throughput screening and
random mutagenesis (to be discussed later in the module)

This is what we are doing in the lab for this module!

1. We looked at the CaM & GFP structures and made predictions about
which point mutations would shift the calcium affinity of pericam.

2. We are now going to produce the mutant genes and proteins, and
assay purified molecules for desired properties.

3. If we had more time, we might then go on and make a new round of
predictions/mutant proteins, to continue the process of tuning the
calcium affinity.
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Example: improving antibody affinity for targets
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Lippow et al. (2007) Nat. Biotechnol. 25: 1171-6
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Rational design can also be used to stabilize proteins—general route to

improvement of function/utility

T4 lysozyme derivative .(U/ug)
o
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http://www.youtube.com/watch?v=kK8gkejFwCc

Time (minutes)

Perry & Wetzel (1984) Science 226: 555-7



The “holy grail” of rational engineering is to design entire proteins de
novo to fold into a defined shape (and ideally carry out a function)

Simplest task is to design peptides with defined 2° structure

Amino Acid fo’ P.* fai® Pai* f&® Pg’ S P
Ala 0.522 1.45 0.272 1.59 0.167 0.97 0.311 0.66
Arg 0.282 0.79 0.115 0.67 0.154 0.90 0.564 1.20
Asn 0.263 0.73 0.090 0.53 0.113 0.65 0.624 1.33
Asp 0.351 0.98 0.090 0.53 0.137 0.80 0.514 1.09

1 1.07

Cys 0.278 0.77 0.056 0.33 0.222 .30 0.500

Related task is to predict 2° structure from sequence
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Chou & Fasman (1974) Biochemistry 13: 222-45
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De novo design can be extended to 3° and 4° structure. Example is
design of a functional enzyme from so-called coil-coil peptides:
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Kaplan & Degrado (2004) Proc. Natl. Acad. Sci. USA 101: 11566-70
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What knowledge is required for “high-resolution” protein engineering?:

- determination of 3D structure, for mutagenesis-based engineering
- knowledge of protein folding rules for de novo engineering
- computational modeling techniques usually required

Computational methods important for protein engineering:
- modeling & visualization
* energy/thermodynamic calculations
« searching conformation and sequence spaces
- comparison with known protein structures/sequences

The basis of more automated analysis of structural perturbations than
our own “inspect and try” approach involves use of an energy function
to evaluate plausibility of candidate structures:

Etot = Ebond + Eangl + Edihe + Eimpr + EVDW + Eelec + EHbond T ..

This may be evaluated using a force field (e.g. CHARMM19) and
atomic coordinates available from simulation or modified PDB file.



http://www.youtube.com/watch?v=zWq4UG2IzAE




