Module 2 overview

lecture

- 1. Introduction to the module
- 2. Rational protein design
- 3. Fluorescence and sensors
- 4. Protein expression

lab

- 1. Start-up protein eng.
- 2. Site-directed mutagenesis
- 3. DNA amplification
- 4. Prepare expression system

SPRING BREAK

- 5. Review & gene analysis
- 6. Purification and protein analysis
- 7. Binding & affinity measurements
- 8. High throughput engineering

- 5. Gene analysis & induction
- 6. Characterize expression
- 7. Assay protein behavior
- 8. Data analysis

Lecture 4: Protein expression & purification

- I. Why express & purify proteins?
 - A. Scientific applications
 - B. Applications in industry, etc.
- II. Protein expression systems
 - A. Alternatives to protein expression
 - B. Prokaryotic and eukaryotic systems

Laboratory uses of purified proteins

Biochemistry analysis

Structural biology

Research biochemicals

www.mcgill.ca, images.apple.com, www.varianinc.com, www.neb.com

Protein tľ

Nat. Biotechnol.

thoropoutice	2001 and 2003					
lierapeutics	Product (generic)/ marketing company	2001 (\$million)	2002 (\$million)	2003 (\$million)	Growth (decline) 2002– 2003 (%)	
	Procrit (epoetin alfa)/ Johnson & Johnson	3,430	4,269	3,986	(6.6)	
	Epogen (epoetin alfa)/ Amgen	2,108	2,261	2,435	7.7	
	Neupogen (filgrastim)/ Amgen	1,346	1,380	1,268	(8.1)	
PEGylated	Neulasta (pegfilgrastim)/ Amgen	0	464	1,255	170.5	
	Novolin (insulin systemic)/ Novo Nordisk	2,244	2,255	2,235	(0.9)	
	Avonex (interferon beta-1a)/ Biogen IDEC	971	1,034	1,170	13.2	
PEGylated	PEG-Intron A franchise (pegylated interferon alpha)/ Schering Plough	1,447	2,736	1,851	(32.3)	
TNF ligand binding domain + Fc antibody domain	Enbrel (etanercept)/ Amgen	856	521	1,300	149.5	
epo engineered to have additional glycoslyation sites	Aranesp (darbepoetin alfa)/ Amgen	42	416	1,544	271.2	
	NeoRecormon (epoetin-beta)/ Roche	479	766	1,318	72.1	
	Top ten product sales	12,923	16,102	18,362	14.0	
	Others	8,547	10,833	13,703	26.5	
	Total market value	21,470	26,935	32,065	19.0	
Paviou & Reichert (2004)	Source: Datamonitor and company-reported information.					

 Table 1 Top ten recombinant therapeutic proteins and their global sales between

4

clockwise from top left: s.sears.com, www.beertech.co.uk, www.treatment-skin.com, www.valleynaturals.com, servekrishna.net

clockwise from top left: i.dailymail.co.uk, www.wikipedia.com, media.washingtontimes.com

How can proteins be produced?

1. Purify from natural source

advantages: no chemistry or DNA manipulation required, proteins likely to fold properly, assemble with native cofactors, *etc. disadvantages:* usually only practical for high abundance proteins, source-specific purification method required

2. Synthesize de novo

advantages: no DNA manipulation required, synthesis methods well established, proteins produced are relatively pure *disadvantages:* relatively expensive, becomes extremely difficult for polypeptides > 50 amino acids

 Express and purify from a dedicated expression system advantages: cheap and frequently high-yield, versatile expression systems already established disadvantages: cloning required, troubleshooting often needed to obtain high expression and proper folding

Solid phase peptide synthesis is a reliable technique for generating short polypeptides

www.pitt.edu

Table 1. Effects of accumulated errors on final product yields

No. of reactions		Yield of each reaction (%)				
		100	99	95	90	
10	Overall yields	100	90	60	35	
20		100	81	36	12	
30		100	74	21	4	
40		100	67	13	1	
50		100	61	8	< 1	

X = Temporary amino protecting group Y = Permanent side-chain protecting group

A = Carboxy activating group

Chan & White (2000) Fmoc Solid Phase Peptide Synthesis

E. coli are the most common host for recombinant gene expression

The *lac* operon is the basis for the most common bacterial protein expression systems

Stryer (1988) Biochemistry, 3rd ed.

Н

OH IPTG

T7 expression system

Other induction systems can also be used for protein expression in *E. coli:* arabinose system is considered to be more tightly controlled than the *lac* operon

Differences between prokaryotic and eukaryotic proteins sometimes require eukaryotic expression systems.

These two proteins exemplify characteristics that frequently call for eukaryotic expression:

www.rcsb.pdb.org

www.rikenresearch.riken.jp

Eukaryotic expression vectors share features with bacterial systems

Invitrogen (2006) T-REx System

Prokaryotic vs. eukaryotic protein expression

property	prokaryotic	higher eukaryotic
yield/(L culture)	1-100 mg	widely variable
cost/(L medium)	~\$5	~\$50
introduction of DNA	transformation of competent cells	viral or nonviral transfection
handling	sterile needles, etc.	tissue culture hood
cell incubation	shaking incubator	usu. w/CO ₂ -control
induction	usually IPTG	none, tetracycline
glycosylation, etc.	no	yes
notes	best for small, globular proteins	best for complex, eukaryotic proteins