M2D1: Complete in-silico cloning of protein expression plasmid

- 1. Prelab discussion
- 2. Complete DNA engineering exercise

That was the last year the DNA invited the restriction enzyme to their Halloween party.

Mod 2 Major Assignments

- Journal Article presentation (15%)
 - Individual
 - Presentations on 11/1 & 11/3
- Research article (20%)
 - Individual
 - due 11/21
- Laboratory quizzes (collectively 5%)
 - M2D4 and M2D7
- Notebook (collectively 5%)
 - one entry will be graded by Chyna 24 hr after M2D7
- Blog (part of 5% Participation)
 - due 11/5 & 11/22 via Slack channel

Overview of M2: drug discovery

Research goal: Test small molecules for binding to the *Plasmodium falciparum* FKBP35 protein using a functional assay.

How are proteins made?

What if we want to make a specific protein?

- Chemically synthesize protein by successively linking each amino acid
 - Complicated, have to make each protein, expensive
- Synthesize RNA encoding the protein
 - RNA degrades easily
 - Amplification: 1 RNA -> Many Proteins
- Create DNA encoding the protein
 - Highly stable, easily transformed into bacteria
 - Amplification Cascade: 1 DNA -> Many RNA -> Many Proteins

What if we want to make a specific protein?

- Who are the players?
 - Insert
 - Vector
- What is the process?
 - Digestion
 - Ligation

- Who are the players?
 - Insert
 - Vector
- What is the process?
 - Digestion
 - Ligation

Digestion: restriction enzymes

- Function as homodimers
- Each dimer contains active site that cleaves backbone at site of palindromic recognition sequence
- Results in cleavage of both strands

Digest reagents and conditions

Reagents

Conditions

• Temperature:

• Time:

- Who are the players?
 - Insert
 - Vector
- What is the process?
 - Digestion
 - Ligation

Ligation: T4 DNA ligase

- Functions as a carrier for AMP leaving group
- Forms covalent phosphodiester bond between 3' OH acceptor and 5' phosphate donor
- Requires ATP

Ligation conditions

• Ideally, want 3:1 molar ratio of insert:backbone

 Calculate molar amounts from measured concentrations and known sizes of DNA molecules

Pro tips for ligation calculations

- 1. Determine volume of vector
 - Use backbone concentration = 50 ng/uL
 - Want 50 100 ng
- 2. Calculate moles of vector
 - Vector = (you will discover this in the exercise) bp, MW bp = 660 g/mol
- Calculate moles of insert
 - Insert = (you will discover this in the exercise) bp, 3:1 ratio of insert:vector
- 4. Calculate volume of insert
 - Use insert concentration = 25 ng/uL

How do we confirm the cloning product?

Transformation

Purification

Digestion

Transform plasmid into bacteria for amplification

1. Incubation

2. Heat shock

3. Recovery

4. Selection

Purify amplified plasmid for confirmation

- 1. Resuspend cells
- 2. Lysis
- 3. Neutralization
- 4. Wash
- 5. Resuspend or elute DNA

Confirmation digest follows plasmid purification

- Ideally, will cut once in insert and once in vector
 - Xbal and EcoRI?
 - Pstl?
 - Ncol?

pNLL-PCR (7000bp)

For today...

- In silico cloning of your plasmid
- Set up restriction enzyme digest
 - Begin by 4:30pm

For M2D2...

- Sign up for your article for the Journal Article presentation on the wiki
- Read your journal article, chose the figures you want to be the focus of your story, and answer the questions on the wiki