Welcome to 20.109

Laboratory Fundamentals of Biological Engineering

Orientation Lecture Fall 2009

20.109

Laboratory Fundamentals of Biol Eng

Course Mission

- To prepare students to be the future of Biological Engineering
- To teach cutting edge research skill and technology through an authentic research experience
- To inspire rigorous data analysis and its thoughtful communication

- Module 1 DNA Engineering
- Module 2 System Engineering
- Module 3 Biomaterials Engineering

openwetware.org/wiki/20.109(F09)

DNA Engineering: GFP recombination vector

Experiments

- Design and create vectors for expressing fluorescent protein in mouse embryonic stem cells
- Use fluorescence to analyze recombination of variously damaged DNA substrates

Lab Skills

- Retrieve and manipulate sequences from databases
- Clone PCR-amplified DNA fragments
- Transfect mammalian cells
- Flow Cytometry

System Engineering: Bacterial photography

Lab Skills

- Optimize a system
- Genetic screen
- Western analysis
- Sequence analysis
- β-gal assay

Experiments

- Measure bacterial photography output
- Screen library for mutations that increase dynamic range of system
- Identify amino acid changes and their consequences

Biomaterial Engineering: Phage battery

Experiments

- Grow gold nanowires on phage surface
- TEM to visualize
- Assemble battery
- Measure capacity

Lab skills

- Phage material production
- Fabrication of bio-based device
- Effect of variation: % Au vs % Ag

Expectations

Some of your expectations of us

- that we will come to class and lab prepared
- that our assignments are clear and reasonable
- that we will treat every 109er with respect
- that we will give everyone equal chance at success

Some of our expectations of you

that you will come to class and lab prepared

• that you will not interfere with each other's learning

• that you will invest the very best of yourself

that you will offer honest and frequent feedback

Course Details

Lecture Tuesdays and Thursdays 11-12, 66-144

LabTuesdays and Thursdays 1-5, 56-322Wednesdays and Fridays 1-5, 56-322

There are no "make-up" labs

Work must be turned in on time

reports, homework: at beginning of lab lab notebook pages: at end of lab

o notobook pageo. at ena en ab

You will perform experiments in pairs

Assignments can be worked on together but submitted individually

"Celebrations of learning"

50% Written Work Modules 1 and 2

30% Oral Presentations Modules 2 and 3

10% Homework Assignments

5% Daily Lab Quizzes

5% Lab Notebooks

Module	Торіс	Assignment	% of Final Grade
1	DNA Engineering	"Progress Report"	15
		"Memo"	10
2	System Engineering	research article	25
3	Biomaterial Engineering	oral presentation of research idea + written text	20
also in 2	Journal Club <u>I</u> or <u>II</u>	oral presentation	10

Foundations/Skills

Basic Laboratory Skills

following and designing protocols first-hand experience with equipment and procedures how to keep a lab notebook

Robust Quantitative Analysis of Data

statistical analysis when appropriate repetition of protocols to assess quality of findings effect of experimental perturbations on outcome

Verbal and Written Communication

two oral presentations three written reports

Critical Thinking

analysis and discussion of primary scientific literature

"what we learn to do we learn by doing ... "