Porphyrins:

Chemistry and Biology

20.109 Lecture 61 March, 2012

Goals

Explore some essential roles of heme in biology

 Appreciate how Nature has used the same cofactor to achieve diverse functions

 Gain some basic insight into how the cofactor properties can be tuned by its macromolecular environment

A sampling of porphyrins in Nature

Chlorophyll

Hemoglobin

Porphyrin structure

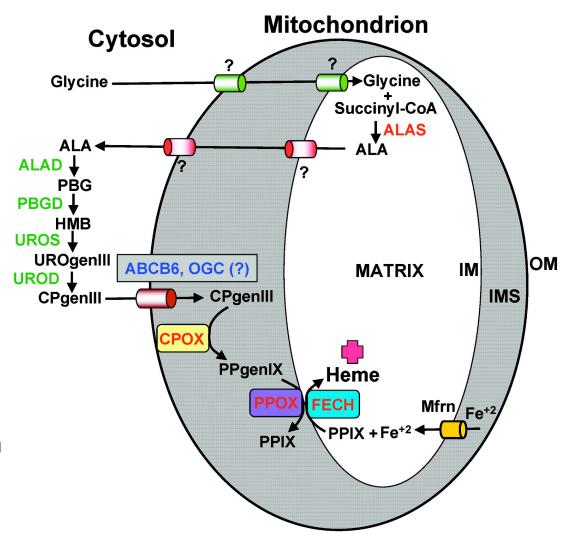
Porphyrins are "tetrapyrroles"

Porphine = simplest porphyrin

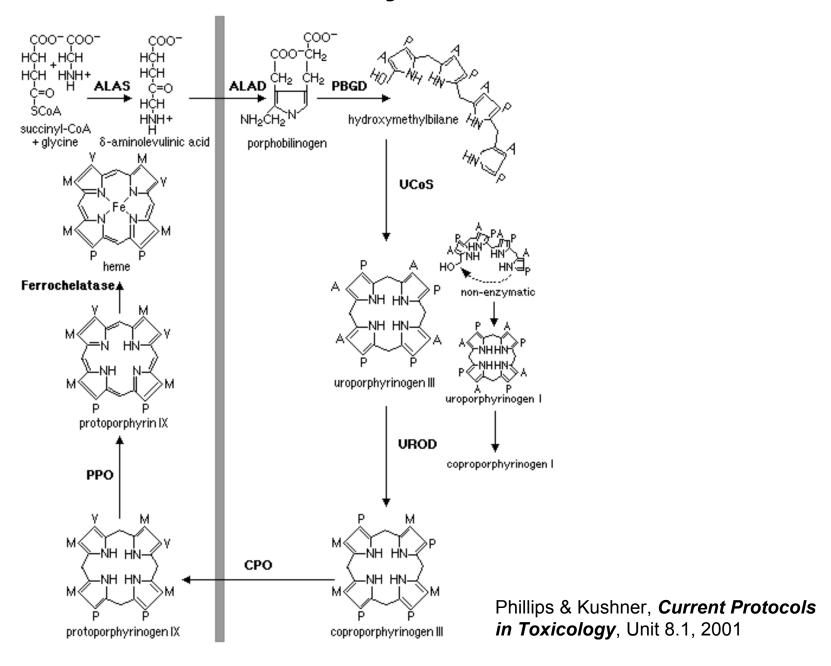
Features distinguishing porphyrins

- 1. Functional groups elaborated from this basic tetrapyrrole structure;
- 2. Identity of the coordinated metal ion

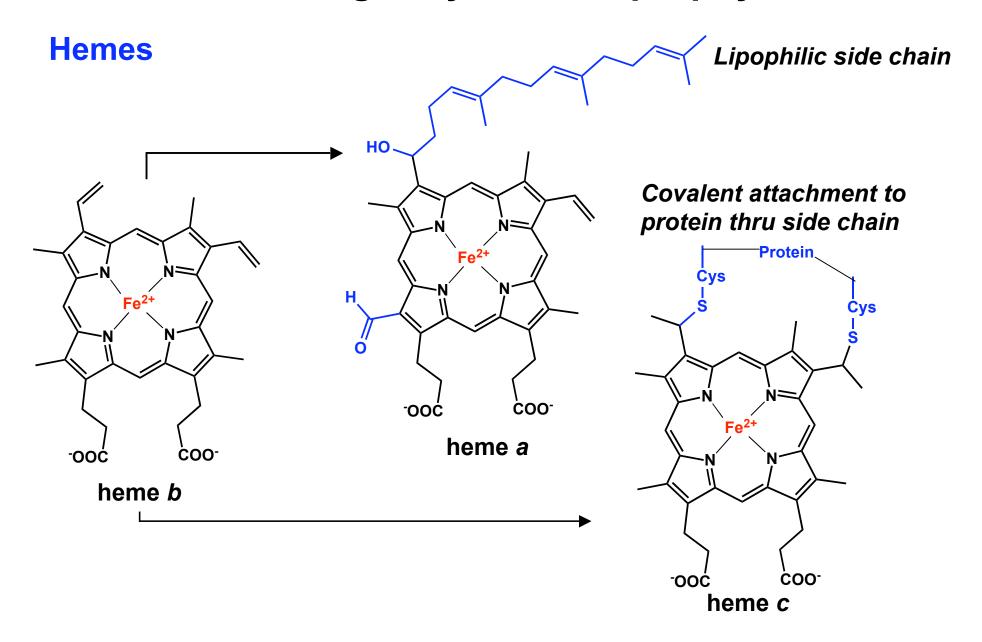
Protoporphyrin IX


A biologically relevant porphyrin

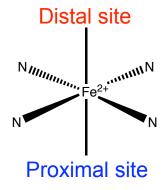
Protoporphyrin IX


Iron protoporphyrin IX (heme b)

Heme biosynthesis


- Complex, multi-step process
 - Several enzymes
 - Mitochondrial
 - Cytosolic
 - Uses amino acid (glycine)
 and Kreb's cycle
 intermediate (succinyl
 CoA) as initial substrates
 - Terminal step involves inserting Fe²⁺ into the protoporphyrin IX skeleton to make heme b

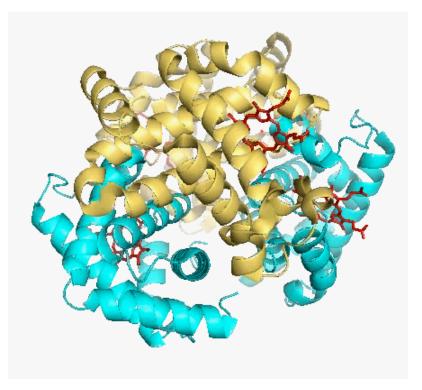
Heme biosynthesis

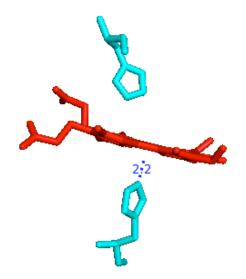


Some biologically relevant porphyrins

Some heme properties correlated with function

heme b

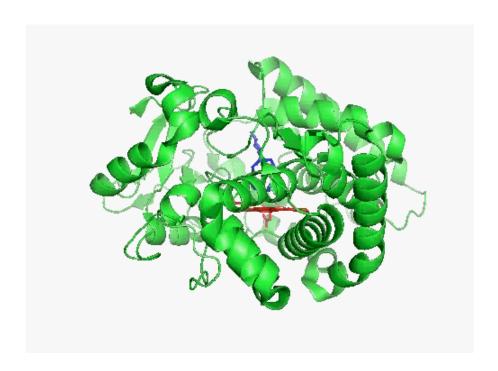


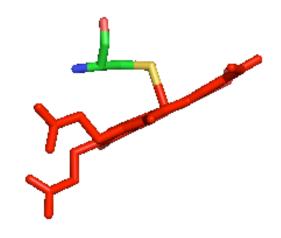

Heme coordination sites

- Resting redox state of iron (Fe²⁺ v. Fe³⁺)
- Affinity for non-protein derived ligand
 - Impacted by iron redox state
 - Some ligands bind Fe²⁺ better than Fe³⁺
- Identity of the protein-derived ligand
 - Amino acid (e.g. histidine, cysteine, methionine, tyrosine) side chain
- Shape of the heme cofactor

A survey of heme function

- Function: Oxygen transport
- Hemoglobins
 - Non-protein ligand: O₂
 - Cofactor: heme b
 - Resting redox state: Fe²⁺
 - Protein ligand to heme: histidine
 - Tetrameric protein
 - 2α chains
 - 2β chains
 - Each monomeric chain binds one heme b molecule
 - 4 hemes/tetramer
 - Each heme can bind one O₂
 atom



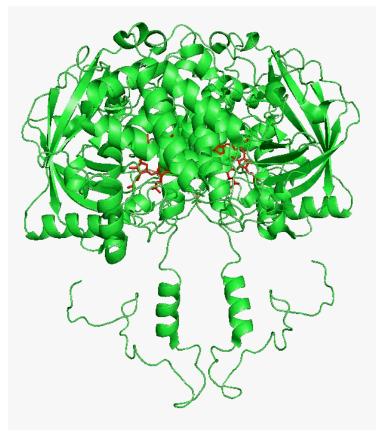

Enzymatic activity

- Cytochrome P450s
- Non-protein ligand: O₂ (upon iron reduction to Fe²⁺ during catalytic cycle)
- Cofactor: heme b
- Resting redox state: Fe³⁺
- Protein ligand to heme: cysteine

Function:

- Detoxify xenobiotics = foreign compounds
 - E.g. medications; environmental toxicants
- Catalyze reactions such as: substrate oxidations

Enzymatic activity


Catalase:

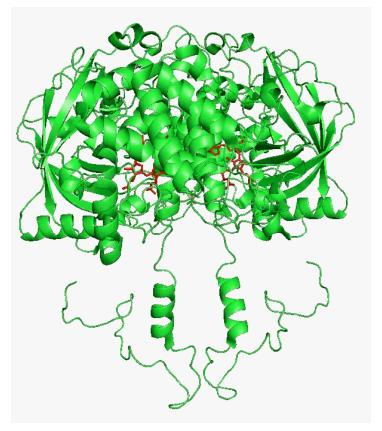
- Non-protein ligand: H₂O₂
- Cofactor: heme b
- Resting redox state: Fe³⁺
- Protein ligand to heme: tyrosine

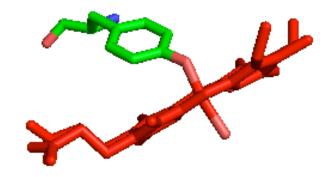
Function

 Protects against hydrogen peroxide-induced oxidative damage

$$2H_2O_2 \xrightarrow{\text{catalase}} 2H_2O + O_2$$

Catalase from H. Pylori (PDB accession: 2IQF)

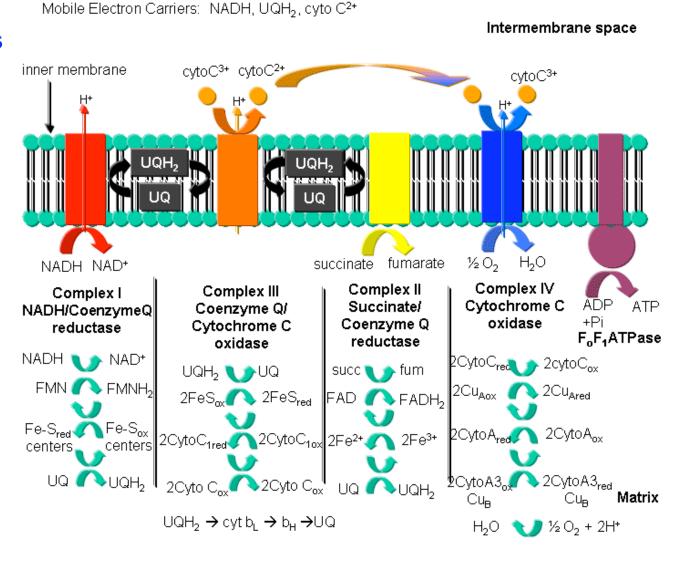

Enzymatic activity


Catalase:

- Non-protein ligand: H₂O₂
- Cofactor: heme b
- Resting redox state: Fe³⁺
- Protein ligand to heme: tyrosine

Function

- Protects against hydrogen peroxide-induced oxidative damage
- Breaks down hydrogen peroxide



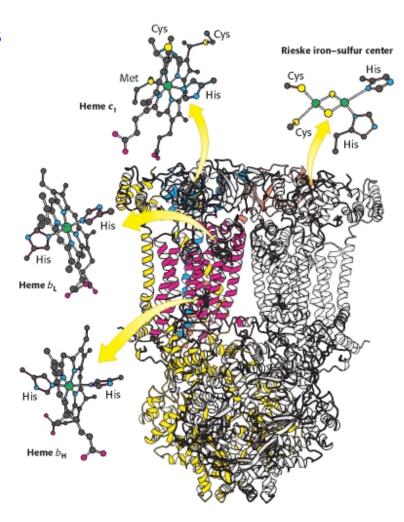
Catalase from H. Pylori (PDB accession: 2IQF)

MITOCHONDRIAL ELECTRON TRANSPORT

Electron transport

chain: cytochromes

Electron transport summary


Electron transport chain: cytochromes

Cytochrome bc1

- Non-protein ligand: None
- Cofactors: 2 heme b + 1 heme c
- Resting redox state: Fe³⁺
- Protein ligand to heme: 2 histidines

Function

- Electron transfer (not O₂ binding) is the main function of the heme
- Bis-histidyl ligation prevents ligand binding

Cytochrome c oxidoreductase (Complex III)

Electron transport chain: cytochromes

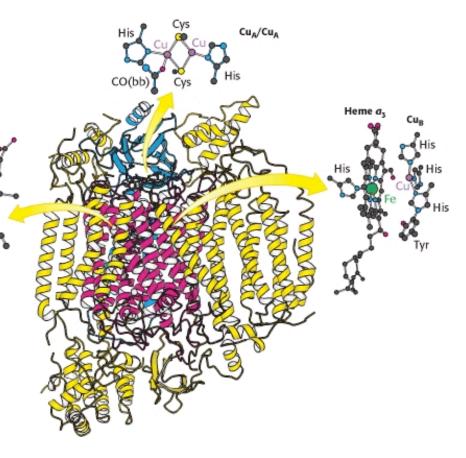
Cytochrome c

- Non-protein ligand: None
- Cofactors: 1 heme c
- Resting redox state: Fe³⁺
- Protein residue binding heme: 2 histidines

Function:

- Electron transfer
 - Shuttles electrons from Complex III to Complex IV
 - Bis-histidyl ligation excludes nonprotein ligand binding

Heme a


 Electron transport chain: cytochromes

Cytochrome c oxidase

- Non-protein ligand: None/O₂
- Cofactors: 2 heme a
- Resting redox state: Fe³⁺
- Protein residue binding heme:
 1 or 2 histidines

Function

- Electron transport only (heme
 a 2 histidine ligands)
- Electron transport AND O₂
 reduction (heme a3 one histidine ligand)

Cytochrome c oxidase (Complex IV)

- Allosteric regulation of enzymatic activity:
- Soluble guanylate cyclase (sGC)
 - Non-protein ligand: NO (nitric oxide)
 - Cofactors: heme b
 - Resting redox state: Fe²⁺
 - Protein residue binding heme: 1 histidine
- Function
 - NO binding to heme stimulates sGC activity

Summary of heme cofactor properties

heme a cofactor Non-protein ligand Ligand fate

Cytochrome c oxidase

O₂ (heme *a3*)

- Reduced to H₂O

None (heme a)

Electron transport

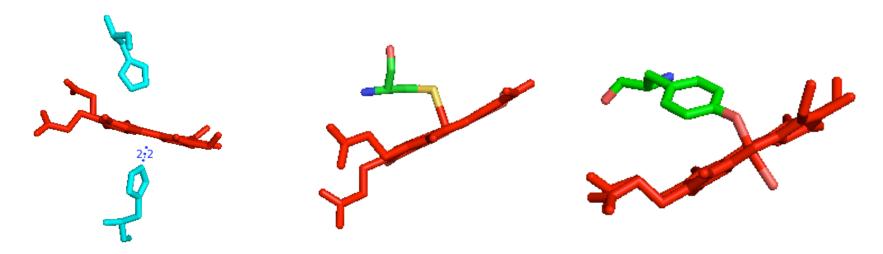
heme c cofactor

Cyctochrome c

None

Electron transport

Cytochrome c1


None

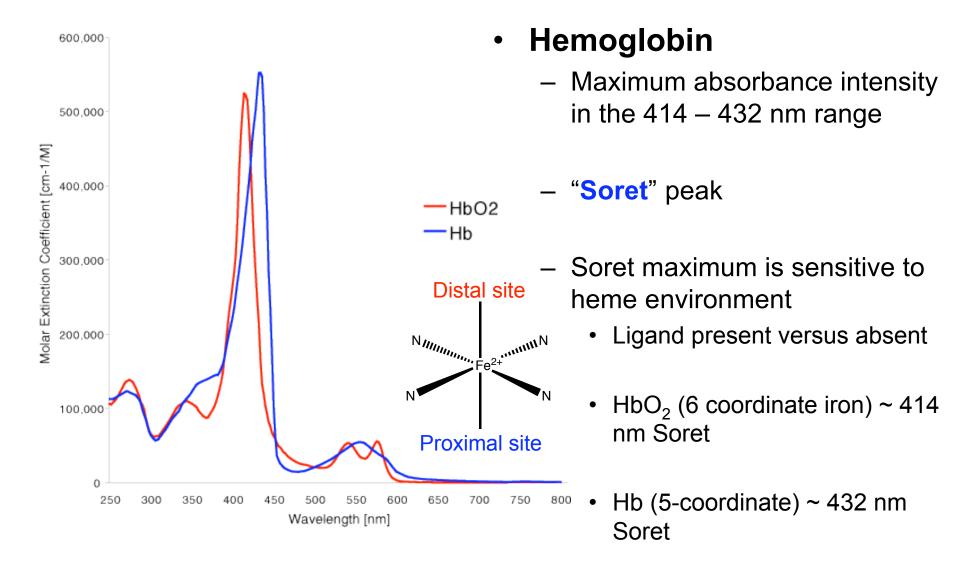
Electron transport

Summary of heme cofactor properties

heme b cofactor	Non-protein ligand	<u>Ligand fate</u>
Hemoglobin	O_2	Transported intact
Cytochrome P450	O_2	 Incorporated into product
Catalase	H_2O_2	Degraded
– sGC	NO	 Unchanged by sGC

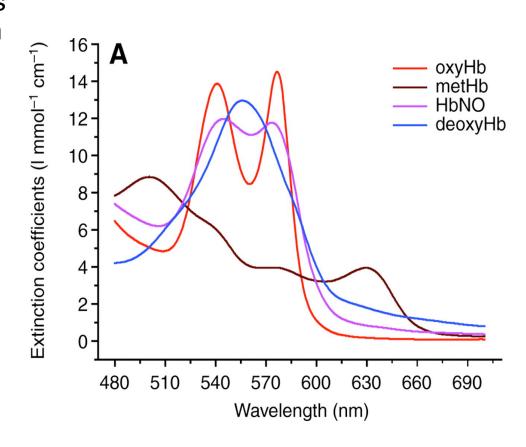
- Same cofactor, yet VERY different ligand binding properties
 - How might this be achieved?
 - How can the identity of the ligand binding the cofactor be tuned?
- Identical interacting ligand, yet VERY distinct outcomes possible!
 - How might this be achieved?

- Iron oxidation status
 - Fe²⁺ (O₂, NO, CO binding favored)
 - Fe³⁺ (H₂O, H₂O₂, CN⁻ (cyanide), N_3^- (azide)
- Identity of the side chains close to distal pocket
 - Block access of certain ligands
 - Stabilize bound ligand (e.g. H-bonding)
- Electron distribution in heme cofactor
 - Protein derived side chain identity
 - Heme distortion


Studying hemoproteins

- Gaining insight into hemoprotein biochemistry
 - Ligand binding status
 - Oxidation state
 - Porphyrin ring distortion
- X-ray crystallographic data not always available
 - Even when available, cannot distinguish iron oxidation states

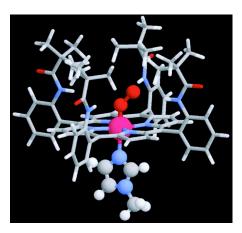
Studying hemoproteins


- Frequently used techniques:
 - Electronic absorption spectroscopy (UV-vis)
 - Iron coordination status (e.g. 5 versus 6 coordinate)
 - Iron oxidation state
 - Electron paramagnetic resonance (EPR)
 - Iron oxidation state
 - Spin state (presence of paired versus unpaired outer shell electrons)
 - Resonance Raman & Infrared spectroscopy (vibrational spectroscopy)
 - Insight into distortion of heme structure

Sample electronic absorption spectra

Sample electronic absorption spectra

- Think of absorption spectrum as "fingerprint" for the hemoprotein state
- Absorption in this wavelength range is sensitive to the:
 - Iron oxidation state (MetHb = Fe³⁺)
 - Iron coordination state (Hb versus HbO₂)
 - Coordinated ligand (O₂ versus NO)



Modulating heme properties

Bioorganic chemistry

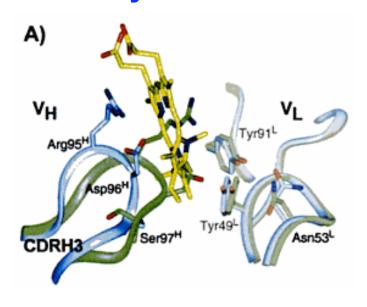

O $C(CH_3)_3$ $C(CH_3)_3$ C=ONH NH C(CH₃)₃ C=O NH NH NH NH NH

Figure 22.13
A synthetic, picket fence heme complex.
[Reproduced with permission from Collman, J. P. Acc. Chem. Res. 1977, 10, 265.]

Zou S et al. PNAS 2002;99:9625-9630

Antibody

Aptamers?

Summary

- Nature uses the same basic cofactor to achieve many distinct functions:
 - Electron transfer
 - Ligand transport
 - Enzyme catalysis
 - Allosteric regulation
- These distinct functions are possible because the chemical properties of heme can be precisely tuned by its macromolecular environment
 - Nature uses several strategies to achieve the desired tuning
 - Can we selectively tune heme properties to take advantage of its rich chemistry?