Module I:

Introduction

20.109 Lecture 1 9 February, 2012

Module Overview

- Introduction to:
 - Fundamental concepts and techniques in molecular biology
 - Appreciating nucleic acids (*RNA* in particular) as more than just information storage/transfer molecules
 - Structural
 - Catalysts
 - A powerful and accessible strategy (SELEX) for identifying nucleic acids (Aptamers) with desirable properties
 - Binding to a defined target
 - Catalysts

Module Objectives

• Lectures:

- Conceptual and practical considerations for successfully selecting nucleic acid *aptamers* with desired properties [SELEX]
- Become comfortable with nucleic acid [DNA and RNA] libraries
 - Design
 - Manipulation
 - Characterization
- Broadly consider the practical applications of aptamers
 - Cell biology [e.g. post-transcriptional regulation]
 - Technology [e.g. biosensors]
 - Therapeutics [e.g. anti-clotting, macular degeneration]

Module Overview

Day	Lecture	Lab
1	Introduction	DNA library synthesis (PCR)
2	SELEX I: Building a Library	DNA library purification (agarose gel electrophoresis)
3	SELEX II: Selecting RNA with target functionality	RNA library synthesis
		(<i>In vitro</i> transcription = IVT)
4	SELEX III: Technical advances	RNA purification and heme
	& problem-solving	affinity selection
5	Characterizing aptamers	RNA to DNA by RT-PCR
6	Introduction to porphyrins: chemistry & biology	Post-selection IVT
		Journal Club 1
7	Aptamer applications in biology & technology	Aptamer binding assay
8	Aptamers as therapeutics	Journal Club 2

Today's Objectives

- Provide a context for appreciating RNA as a macromolecule capable of specific interactions
 - Small molecules
 - Proteins
- Appreciate that principles derived from our understanding of naturally occurring systems inspire aptamer development
- Understand that:
 - Atomic level interactions underlie these binding events
 - Binding reactions occur in 3-dimensional space

The Central Dogma

- Actin, myosin

RNA has diverse functions, too!

How does mRNA decoding take place during translation?

– Two particularly critical players depend on RNA for proper function

Ribosome

• tRNA

Image adapted from: National Human Genome Research Institute.

Ribosome composition and structure

- Two subunits
 - Large
 - 50S in prokaryotes/ 60S in eukaryotes
 - Small
 - 30S in prokaryotes/ 40S in eukaryotes
- Composition?
 - 60% RNA!
 - 5S rRNA (LSU)
 - 23S rRNA (LSU)
 - 16S rRNA (SSU)

50S ribosomal subunit (*D. radiodurans*) Blue = ribosomal RNA (rRNA) Gold = protein

Ribosomal RNA functions

• Structural

- Organize the protein components in the ribosome

rRNA serves as a scaffold for the associated protein components

Proper assembly requires establishing very specific atomic contacts between the RNA and protein components

Ribosomal RNA functions

• Enzymatic

- 23S rRNA involved in catalyzes the peptidyl transfer reaction step during translation
 - Binding site for the aminoacyl tRNA is located in the 23S rRNA
- Rate enhancement over non-enzymatic reaction: ~ 10⁵!

Ribosomal RNA functions

• Specific atomic contacts are made between rRNA residues and the amino acyl-tRNA

Schmeing & Ramakrishnan, Nature, 461, 1234-1242 (2009)

rRNA enzymatic activity as a drug target

• Antibiotics

- Used to treat microbial pathogens
- Several different classes
- Target different cellular processes
- Selectively inhibit pathogen but not host pathways
- Chloramphenicol
 - Inhibit ribosomal peptidyl transferase activity!
- Macrolides
 - E.g. erythromycin, clarithromycin
 - Inhibit nascent peptide transfer away from the peptidyl transferase site

Exploiting rRNA enzymatic activity

- Erythromycin binds directly to the 50S ribosome
 - Interacts <u>exclusively</u> with the 23S rRNA!
 - No contacts between drug and any ribosomal protein
 - Bind in the peptidyl transferase cavity
 - Interferes with nascent peptide channeling from the PT cavity
 - Specific rRNA-erythromycin atomic level interactions stabilize the complex
 - Inhibits protein synthesis

Exploiting rRNA enzymatic activity

Structurally distinct antibiotics can bind to the same rRNA

Erythromycin contacts

Chloramphenicol contacts

Structurally distinct antibiotics can bind to the same rRNA

- Different compounds can interact with a single RNA target
 - Overlapping or distinct molecular contacts with the RNA
- What are some potential resulting consequences when thinking of RNA as a binding reagent?

F. Schlunzen et al, Nature 413, 814-821 (2001)

Now what about tRNA?

Image adapted from: National Human Genome Research Institute.

- Each tRNA must be "charged" with its cognate amino acid
- Reaction carried out enzymatically
 - Aminoacyl tRNA synthetase (aaRS)

- Specificity of aminoacylation reaction
 - Charging a tRNA with the right amino acid
 - How might this be achieved?
 - Each tRNA is recognized by a specific aminoacyl tRNA synthetase

• How is this possible?

3D tRNA view

2D tRNA view

Aminoacyl tRNA synthetases very <u>specifically</u> recognize the 3D structure adopted by their cognate tRNA

- How is this achieved?

Aminoacyl tRNA synthetase in complex with tRNA

Van der Waals

Yaremshuk et al, EMBO J, (2002) 21:3829-3840

- tRNAs differ in their sequence
- This translates into differences in structure
 - 2D structure
 - 3D structure
- Atomic level contacts only possible if the tRNA structure fits exactly with the aminoacyl tRNA synthetase structure

tRN

Long

variable arm

Summary

- RNA plays very dynamic roles in biology:
 - Intricately involved in protein synthesis
 - Structural function
 - Enzymatic/catalytic functions
- These roles are facilitated by RNA's ability to:
 - Adopt very defined structures
 - Form molecular interactions with small molecules and proteins
 - Highly specific
 - High affinity
 - Facilitated by complementarity of the interacting partners
 - Atomic level interactions dictate these properties
- As achieved by Nature, can we take advantage of RNA's plasticity to derive new functions?

Module Workflow

Phase I Objective

Reconstitute an RNA SELEX library

Skills

- 1. PCR to generate DNA library template
- 2. RNA synthesis (*in vitro transcription*)– RNA handling precautions
- 3. Nucleic acid purification methods

Central Dogma

BioRad Thermal Cycler

Module Workflow

Phase II Objective

Subject RNA library to selection pressure

Skills

- 1. RNA refolding method
- Restoring proper 3D RNA structure for appropriate function
- 2. Affinity based library enrichment
- Controlling stringency during selection
- 3. RT-PCR: converting RNA into DNA
- Expanding your post-selection library
- Enriched for target aptamers (hopefully)

Module Workflow

Phase III Objective

Analyzing the success of your aptamer selection process

Skills

- 1. UV-visible spectroscopy
- Take advantage of unique heme spectral characteristics
- 2. Data analysis
- Post-acquisition spectral analysis
- Pooled lab data (hopefully) to understand how selection stringency impacts enrichment efficiency

