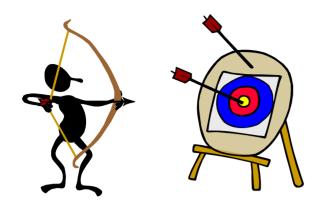
Proposing Biological Engineering Projects


Linda L. Sutliff, BA, MA, MBA Lecturer, Writing across the Curriculum December 2009

I		ī	
		-	

With special thanks to work previously done by my colleague, Atissa Banuazizi

Key components of the talk

- Goals, content and structure
- Slide design
- Team presentations

Goals, Content and Structure

What should the proposal say and how should it be put?

Why Propose?

- Advancing merit of an original research concept
 - Exposing your idea to a professional audience
 - Learning their assessment of its merits
 - Obtaining support, financial or otherwise, for your idea
- Increasing your understanding of your project
- Expanding universe of professional peers

What about the audience?

- Usually reviewers are experts
 - May be seasoned professionals in your field
 - May be generalists or professionals from other fields
 - May have direct knowledge of some aspects of your field
- They need to believe in the project
 - Work *must* be perceived as having merit
 - Time for project must be right
 - Your team must stand out as the best one for the job
- Respect expertise of multidisciplinary reviewer teams

What goes in the proposal?

- Contents vary and are often specified in detail by a funding or contracting agency
- For your assignment, the specification is:
 - Brief project overview
 - Background information to improve audience access
 - Statement of research problem and goals
 - Project details and methods
 - Predicted outcome range (all or nothing works as planned)
 - Needed resources (e.g.., time, funds, staff, equipment)
 - Societal impact of a successful project

Labor division and content: 50:50

1st Partner

- Brief project overview
- Background information
- Research problem statement
- Project goals statement

2nd Partner

- Project details and methods
- Predicted outcome range
- Resources required by work
- Societal impact if all goes as planned

Each partner's material should be of approximately the same length

Labor division and content:

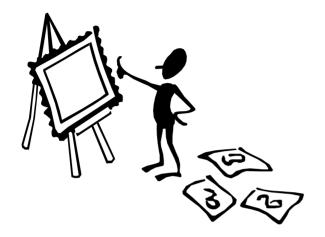
- 1st Partner -- Bread
- Brief project overview
- Background information

2nd Partner -- Filling

- Research problem statement
- Project goals statement
- Project details and methods
- Predicted outcome range

- Resources required by work
- Societal impact if all goes as planned

Labor division and content:


1st Partner

- Brief project overview
- Project details and methods
- Predicted outcome range

^{2nd} Partner

- Background information
- Research problem statement
- Project goals statement
- Resources required by work
- Societal impact if all goes as planned

Beware of the "tennis match" syndrome

Slide Design

Plan each slide for content and aesthetics

Recall design principles

- Remember less can be more
 - Balance type, graphics and white space
 - Make each word count
 - Unseen messages do not help your cause
- Exploit audience reading habits
- Develop and sustain a consistent design for each partner's contribution
 - Avoid changing colors, font styles and capitalization
 - Keep language formality consistent

Cut and paste from wiki

Amino acid		Letter code	
Alanine	А	71.04	
		-	
Arginine	R	156.10	
Asparagine	N	114.04	
Aspartate	D	115.03	
Cystine	С	103.01	
Phenylalanii	ne	F	147.07
Glutamine	Q	128.06	
Glutamate	E	129.04	
Glycine	G	57.02	
Histidine	Н	137.06	
Isoleucine	I	113.08	
Leucine	L	113.08	
Lysine	K	128.09	
Methionine	Μ	131.04	
Proline	Р	97.05	
Serine	S	87.03	
Threonine	Т	101.05	
Tryptophan	W	186.08	
Tyrosine	Υ	163.06	
Valine	V	99.076	

Residue Mass (Da)

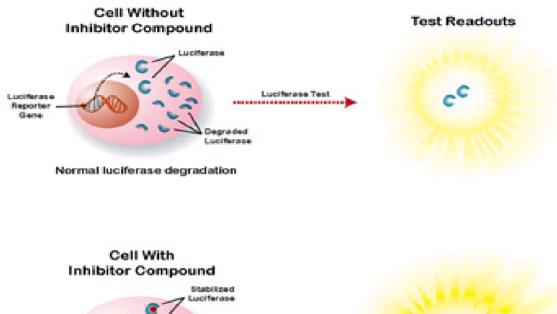
Excel table with lines

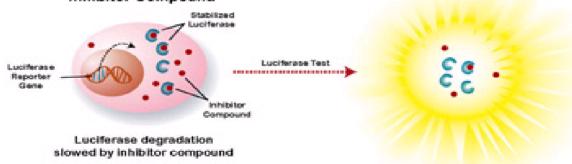
Amino Acid	Letter Code	Residue Mass (Da)		
Alanine	А	71.040		
Arginine	R	156.100		
Asparagine	Ν	114.040		
Aspartate	D	115.030		
Cystine	С	103.010		
Phenylalanine	F	147.070		
Glutamine	Q	128.060		
Glutamate	E	129.040		
Glycine	G	57.020		
Histidine	Н	137.060		
Isoleucine	I	113.080		
Leucine	L	113.080		
Lysine	К	128.090		
Methionine	М	131.040		
Proline	Р	97.050		
Serine	S	87.030		
Threonine	Т	101.050		
Tryptophan	W	186.080		
Tyrosine	Y	163.060		
Valine	V	99.076		

Excel table no lines, but shading

Amino Acid	Letter Code	Residue Mass (Da)	Amino Acid	Letter Code	Residue Mass (Da)
Alanine	Α	71.040	Isoleucine	I	113.080
Arginine	R	156.100	Leucine	L	113.080
Asparagine	N	114.040	Lysine	К	128.090
Aspartate	D	115.030	Methionine	М	131.040
Cystine	С	103.010	Proline	Р	97.050
Phenylalanine	F	147.070	Serine	S	87.030
Glutamine	Q	128.060	Threonine	Т	101.050
Glutamate	Е	129.040	Tryptophan	W	186.080
Glycine	G	57.020	Tyrosine	Y	163.060
Histidine	н	137.060	Valine	V	99.076

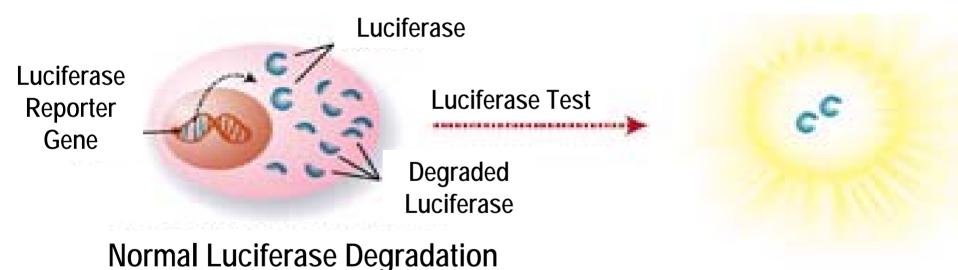
Excel table shading, larger fonts


Amino Acid	Letter Code	Residue Mass (Da)	Amino Acid	Letter Code	Residue Mass (Da)
Alanine	Α	71.040	Isoleucine	1	113.080
Arginine	R	156.100	Leucine	L	113.080
Asparagine	Ν	114.040	Lysine	К	128.090
Aspartate	D	115.030	Methionine	М	131.040
Cystine	С	103.010	Proline	Р	97.050
Phenylalanine	F	147.070	Serine	S	87.030
Glutamine	Q	128.060	Threonine	т	101.050
Glutamate	Е	129.040	Tryptophan	W	186.080
Glycine	G	57.020	Tyrosine	Y	163.060
Histidine	н	137.060	Valine	V	99.076

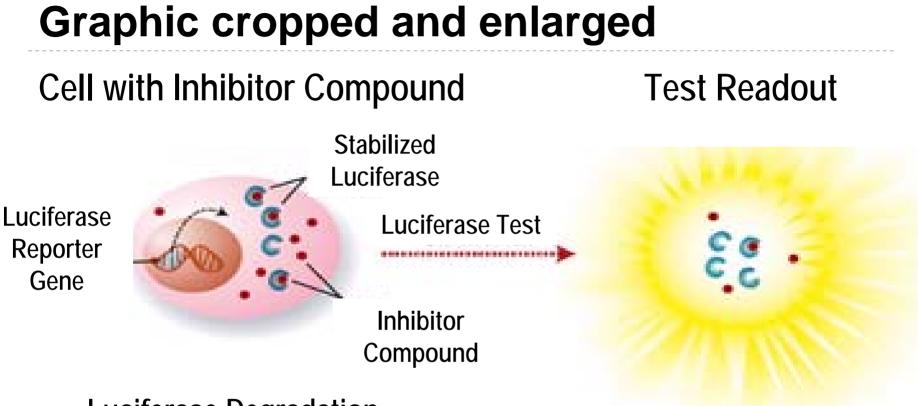

Graphic copied and enlarged from Web

National Human Genome Institute, "Firefly Luciferase Degradation Slowed by Inhibitor Compound," National Institutes of Health, Jan. 21, 2009, Accessed Nov. 23, 2009 http://www.genome.gov/17516876-

Graphic copied and pasted as bitmap

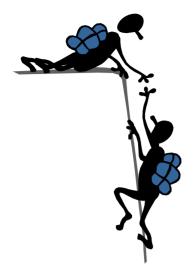


National Human Genome Institute, "Firefly Luciferase Degradation Slowed by Inhibitor Compound," National Institutes of Health, Jan. 21, 2009, Accessed Nov. 23, 2009 http://www.genome.gov/17516876.


Graphic cropped and enlarged

Cell without Inhibitor Compound

Test Readout



Adapted from National Human Genome Institute, "Firefly Luciferase Degradation Slowed by Inhibitor Compound," National Institutes of Health, Jan. 21, 2009, Accessed Nov. 23, 2009 http://www.genome.gov/17516876

Luciferase Degradation Slowed by Inhibitor Compound

Adapted from National Human Genome Institute, "Firefly Luciferase Degradation Slowed by Inhibitor Compound," National Institutes of Health, Jan. 21, 2009, Accessed Nov. 23, 2009 http://www.genome.gov/17516876 .

Team Presentations

Be in it together

Share pre-presentation duties

- Define a role for each partner and announce it
- Revise, revise and then revise again
 - Beware of being too invested in your own contributions
 - Accept constructive criticism graciously
- Practice together
 - Decide on whether to move each other's slides
 - Work toward similar speaking styles, especially in terms of formality
 - Be enthusiastic about what you say yourself and what your partner says
 - Test your Q&A

Be a real team onstage

- Time talk to run no more than 10 minutes
 - Watch time during partner's talk and signal if running long
- Do not upstage your partner
 - Do not move or interrupt during partner's talk
 - Plan all movement between speakers
 - Decide whether to stand or sit during partner's talk
 - If standing, maintain enough distance from speaker to avoid a split focus
- Be familiar with your partner's material
- Prepare for the unexpected

Day of talk hints

- Each team needs three copies of its slides
- Prepare for Murphy
 - If you use an Apple, bring the right adapter
 - E-mail the presentation to yourself – just in case
 - Bring your talking points
- Dress professionally
- Remember that if you get nervous, you have lots of company. Breathe, move and then resume talk

More help

- Alley, Michael, The Craft of Scientific Presentations (New York: Springer, 2005)
- Friedland, Andrew J. and Carol Folt, Writing Successful Science Proposals (New Haven: Yale, 2000).
- "Guide for Proposal Writing," National Science Foundation, 18 Feb. 2004, http://www.nsf.gov/pubs/ 2004/nsf04016/nsf04016.pdf.
- Muller-Parker, Gisele, "How to get NSF funding: A view from the 'Inside," Ocean Sciences of the National Science Foundation, qtd. By Western Washington University, http://www.wwu.edu/ depts/rsp/insideview.pdf.
- Tufte, Edward R., The Cognitive Style of PowerPoint, Cheshire, CT: Graphics Press, 2003.
- ▶ Tufte, Edward R., *Envisioning Information*, Cheshire, CT: Graphics Press, 1990.
- Tufte, Edward R., The Visual Display of Quantitative Information, 2nd Ed., Cheshire, CT: Graphics Press, 2001.