Module Overview

Day	Lecture	Lab
1	Introduction	DNA library synthesis (PCR)
2	SELEX I: Building a Library	DNA library purification (agarose gel electrophoresis)
3	SELEX II: Selecting RNA with target functionality	RNA library synthesis (In vitro transcription = IVT)
4	SELEX III: Library deconvolution, problem-solving & technical advances	RNA purification and heme affinity selection
5	Characterizing aptamers	RNA to DNA by RT-PCR
6	Introduction to porphyrins: chemistry & biology	Post-selection IVT Journal Club 1

SELEX III

20.109 Lecture 423 February, 2012

Aptamers are gaining popularity

of publications with "aptamer"

Today's Objectives

Deconvoluting a SELEX library

How do you know you've succeeded (or failed)?

Conceptualizing selection stringency

Things to consider if/when SELEX fails

Typical SELEX

Deconvoluting your selected library

- Was SELEX successful????
 - How test?

- If your SELEX was successful:
 - How identify the individual library members?
 - How identify conserved sequences/motifs?

Determining the success of your SELEX experiment

Compare library dissociation constants pre- and post- SELEX

Schneider et al, **FASEB J**,, 7(1), 201-207, 1993

Determining the success of your SELEX experiment

 Measure RNA recovered after each round of selection (quantitative PCR)

Advantages:

- Determine progress in real time
- Facilitates rapidly knowing the impact of changing SELEX conditions

Library deconvolution

- Isolate individual aptamers for:
 - -> Sequencing (identification)
 - -> Characterization (binding, etc)

Library deconvolution

- You observe binding of your bulk selected library to the target
 - ~ 10¹⁴ unique members in starting library
 - How many are present at the end?
- Identifying individual aptamers in your library
 - How would you do this?
- One option: Exactly how you'd clone a new gene!

Cloning the aptamer library

Single hit conditions:

- One insert on average incorporated into one plasmid
- Each plasmid now encodes a single aptamer

Problem

- You have a mixture of plasmids
- How do you isolate clonal plasmids?

Addison Wesley Longman, Inc.

Cloning the aptamer library

Bacterial transformation

- Single hit conditions:
 - On average: ≤1 plasmid per bacterial cell
- Plating on selective media:
 - Single colony derived from a single bacterial cell
 - Each colony contains many bacterial cells, each carrying the identical plasmid

Aptamer library now encoded in plasmid library

Achieved:

- Mixture of aptamers in selected library resolved into a plasmid library of individual aptamers
- Preserved ability to manipulate library
- Library archive

The future of deconvolution

- High-throughput sequencing
 - Same instruments sequence genomes
 - Useful for early rounds

...but what went wrong with my SELEX? some common scenarios

1. No detectable binding to target

- Why might this occur?
 - Problem with your binding assay
 - How might you assess this?

- Too few rounds of selection completed
 - How would you determine this?
- Your selection process went awry
 - Poor choice of selection stringency conditions
 - Sequences selected based on amplification efficiency, NOT target binding
 - PCR, RT, in vitro transcription

...but what went wrong with my SELEX? Some common scenarios

2. Aptamers bind target, but ONLY when immobilized in the format used during SELEX

- Why might this arise?
 - Aptamers partially or completely recognize and bind to the solid support!
- How would you change your selection format to avoid this?

Typical SELEX

Negative selection step

Maximizing SELEX efficiency

Design specifications

- Obtain target aptamers on first try
- Fewest possible number of rounds
- High affinity

SELEX

library

Maximizing SELEX efficiency: stringency

Design specifications

- Obtain target aptamers on first try
- Fewest possible number of rounds
- High affinity

bead Remove unbound RNA bead **Elute bound RNA**

Keep binders, remove non-binders

Stringency: everyday example

Not too broad, not too focused...just right

Related searches: <u>cute puppy</u> <u>beagle puppy</u> <u>puppies for sale</u> <u>dogs and puppies</u> <u>puppies wallpaper</u>

Maximizing SELEX efficiency: stringency

- Design specifications
 - Obtain target aptamers on first try
 - Fewest possible number of rounds
 - High affinity

bead Remove unbound RNA bead **Elute bound RNA**

Keep binders, remove non-binders

How adjust stringency???

SELEX stringency: washing

- Washing
 - Higher stringency --> more/longer washes
 - Lower stringency --> fewer/shorter washes
 - Specifies thermodynamics
 - Dissociation constant

SELEX stringency: [RNA]:[target] ratio

- [RNA]:[target] ratio
 - Higher stringency --> higher ratio
 - Lower stringency --> lower ratio
 - Specifies thermodynamics
 - Dissociation constant

Favor recovering higher affinity RNA

SELEX stringency: buffer

- Buffer components/additives
 - pH

- tRNA (nucleic acid)
- BSA (protein)
- Salt concentrations

Ahmad, K. M. et al. Probing the Limits of Aptamer Affinity with a Microfluidic SELEX Platform. PLoS ONE 6, e27051 (2011).

Carothers, J. M., Goler, J. A., Kapoor, Y., Lara, L. & Keasling, J. D. Selecting RNA aptamers for synthetic biology: investigating magnesium dependence and predicting binding affinity. *Nucl. Acids Res.* **38**, 2736–2747 (2010).

My parameter optimization space is HUGE...help!?

• Vary:

- Wash number
- [Library]:[target] ratio
- Buffer conditions
 - pH
 - [salt]
 - tRNA
 - BSA (protein)
- Where do I start my SELEX?
- Which variable(s) do I change if it fails?

Automating SELEX

- Library synthesis (DNA synthesizer)
- Enzymatic reactions
 - PCR (thermal cycler)
 - RT (thermal cycler)
 - In vitro transcription (thermal cycler)
- Binding reactions
 - 96-well plates (shakers)
- Inter-process sample tran
 - Liquid handling robots

microfluidics

Cox & Ellington, *Bioorganic & Medicinal Chemistry*, 9(10), 2525-2531, 2001

Leaders and future of SELEX

Diagnostics

Somalogic

>1000 aptamers to blood proteins

Contract discovery

Summary

Determine library characteristics

Define individual sequences

Adjust SELEX stringency