M1D1: Practice cell culture 09/10/19

- 1. Lab Orientation Quiz
- 2. Pre-lab Discussion
- 3. ½ class goes to the Tissue Culture Room
- 4. ¹/₂ class review CometChip JOVE

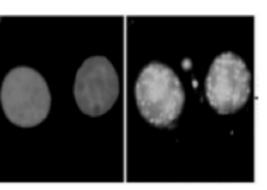
Office Hours

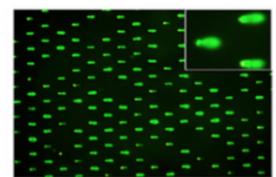
Noreen Wed 10a-12pm Fri 10a-12pm in 16-317

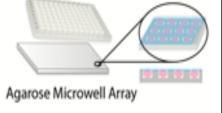
Leslie Wed 9a-10am Fri 4p-5pm in 16-469

Becky Tues 12p-1pm Thurs 12p-1pm in 16-469 (⁷16-220)

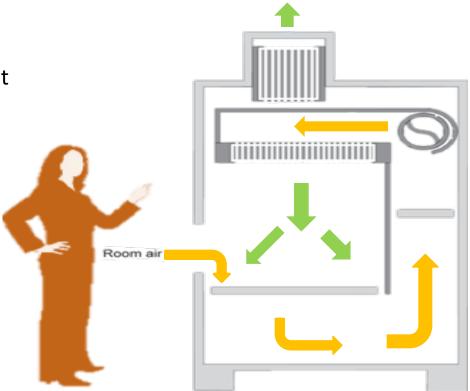
by appointment: nllyell@, lesliemm@, rcmeyer@


Module 1 assignments


- Data summary (15%)
 - In teams, submit on Stellar
 - Draft due 10/14, final revision due 10/26
 - Format: Bullet points, .PPTX
- Mini-presentation (5%)
 - Individual, submit video via Gmail
 - Due 10/19 at 10pm
- Lab quizzes –be on time!
 - M1D4 and M1D7
- Notebook (part of 10% Homework and Notebook)
 - Due 10/4 at 10pm, graded by Shelbi
- Blog (part of 5% Participation)
 - by 10/15 at 10pm


Overview of Module 1: Measuring Genomic Instability

We will quantify methylation DNA damage in mammalian cells in the presence of Arsenite.

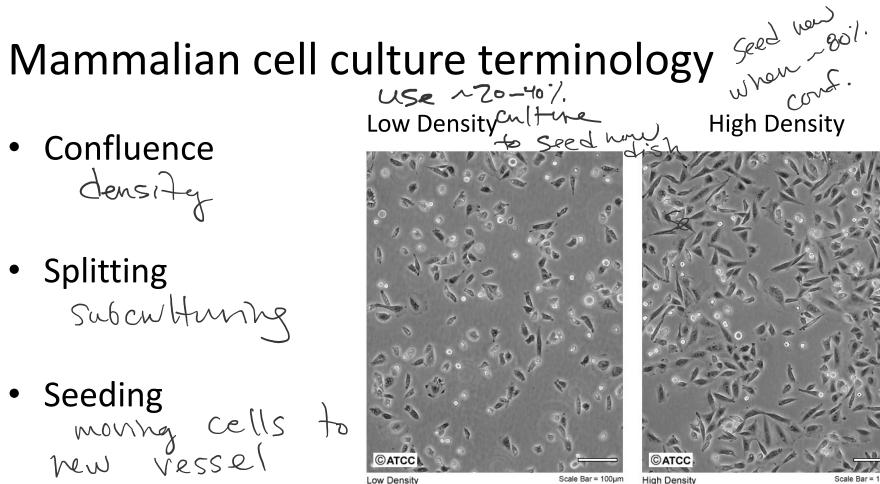


γH2AX assay: Immuno fluorescence of cellular response to DNA damage CometChip assay: single cell gel electrophoresis measuring single strand breaks

Tissue culture sterile technique

- **70% ethanol** everything:
 - Wipe cabinet before and after use
 - Wipe everything that enters the cabinet
 - Do not spray cells with EtOH
- Do not disturb air flow:
 - Do not block grille or slots
 - Minimize side-to-side arm movements
 - Work > 6" away from sash
 - Leave blower on always
- Do not talk into incubator!
- Only open sterile media in hood

Chinese hamster ovary cells (CHO) are a commonly used lab cell line, What do CHO cells need to survive?

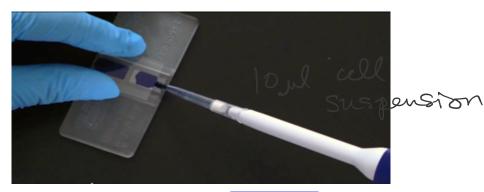


Food: Defined

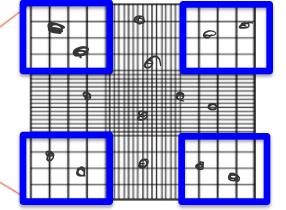
DMEM (Dulbecco's Modified Eagle's Medium) phenol red-pH indicator Sugar CITS amino acids pt fulfer ~7.5 vitamins • FBS (fetal bovine serum) undefined Cholesterol lipids cytokines growth factors Non-food: prevent bacterial antibiotics: penicillin

- Confluence density
- Splitting sub cubturing
- Seeding moving cells to new vessel

Low Density


General steps for splitting cells +WHY?

- 1. Look at cells, estimate confluence note cell shape, media color
- 2. Rinse with PBS kenove extra protein, debn5, x-typsin
- 3. Detach cells with trypsin (enzyme) break substrate achesions
- 4. Count cells accurate # to Seed in new Vessel
- 5. "Seed" new culture vessel give them boom to grow or carry out experiment



Counting Cells

- Hemocytometer: Cell courting
- Trypan blue: Stain for dead cells
- # cells / mL = 10,000 x
 average of 4 corners

$$\frac{3}{4} = 2 \times (0,000 = 20,000 \text{ mL})$$

What should go in your notebook?

Laboratory notebook entry component:	Points:		
	Complete	Partial	Incomplete
Date of experiment (include Module#/Day#) and Title for experiment	1	0.5	0
Hypothesis or goal / purpose	1	0.5	0
Protocols (link to appropriate wiki sections)	1	0.5	0
Notes on protocol changes / clarifications	1	0.5	0
Observations	2	1	0
*Visual details			
*Qualitative information			
*Raw data			
Data analysis	3	1.5	0
*Calculations			
*Graphs and Tables			
Summary and interpretation of data	3	1.5	0
*What did you learn?			
*How does this information fit into the larger scope of the project?			
Information is clear	2	1	0
All days represented	1	0.5	0
OVERALL /15			

Due 10pm after each module, as posted on wiki http://engineerbiology.org/wiki/20.109(F19):_Assignments

How should you format your notebook?

0

Insert ∨ H ∨ B I U & % A ∨ x₂ x² ≔ ≔ ⊠ More ∨

M1D1: In silico cloning and confirmation digest of protein expression vector

THURSDAY, 2/8

Hypothesis or goal:

What are you testing and what do you expect of your results?

Protocols: [include link to wiki]

Part 2: Construct pRSETb FKBP12 in silico

- Include all work / notes / images / sequences generated.
- Be sure to note any interesting observations or protocol changes!

Part 3: Confirmation digest

- Include completed table with volumes.
- Include calculations.
- · Be sure to note any interesting observations or protocol changes!

Summary and interpretations:

What, if any, conclusions can be made and what does this prepare you to do next?

How should you organize your notebook?

- Entitle your project "20.109(F19)_YourName"
 - Make each module a new folder
 - Make each day a new entry within module folder
- Share the project with Leslie and Shelbi
 - Right-click and choose 'settings'
 - Add collaborators by email address

Today in lab:

- 3 teams into tissue culture room to seed cells for H2AX expt. (Orange, Yellow, Green)
- 2. 3 teams review CometChip Assay
- 3. Make sure to keep notes in Benchling today
- HW due M1D2: Create a template for your benchling notebook and make a M1D2 entry from it. For full credit you must include calculations necessary to complete the table in Part 1 on M1D2.

Condition	EdU (final concentration = 5 μ M)	As (final concentration = 80 μ M)	Media	Final volume (1 mL / well)	0
No treatment control (no MMS, no As)	1 μL	0	2 mL	2 mL	
MMS, no As					
no MMS, As					
MMS, As					