M1D4:Prepare Expression System

02/18/16

- 1. Mod1 Quiz 1
- 2. Prelab
- 3. Prep BL21 competent cells
- 4. Mini-prep SDM product from NEB5alpha
- 5. Prep DNA for sequencing
- 6. Transform BL21 cells with mini-prep DNA
- 7. Count colonies on SDM plates

Protein Engineering Summary

- due by 5pm on Saturday, March 12
- revision due by 5pm on Monday, March 28

Summary Content

- 1. Title
- 2. Abstract
- 3. Background, Motivation
- 4. Figures, Results, Interpretation
- 5. (Discussion) Implications, Future Work

Results section bullets for M1 summary

State concisely in bullet point:

- 1. What was the overall goal of the experiment? (introductory sentence)
- 2. What was your expected result?
 - What are the expected band sizes on your gel?
- 3. What evidence do you have that your result is correct or incorrect?
 - What controls did you perform and did they work as expected?
- 4. What was the result?
 - Were bands of the expected size present? Why or why not?
- 5. In sum, what do these data suggest or indicate? Think about how the data were used.
- 6. What does this motivate you to do next?

Since last week...

Mini-prep to isolate plasmid DNA from *E. coli*

	steps	contents	purpose	
	prepare	Tris/EDTA buffer RNase	weaken the membrane resuspend pellet	
	lyse	SDS alkaline NaOH	solubilize proteins, denature DNA	
	neutralize	acetic acid, chaotropic salt, potassium acetate	renatures short DNA, preci long DNA salt-DNA bind column	pitates
	spin	separates soluble and inso	luble	
	bind	silica column	concentrate DNA	
	wash	ethanol	wash away contaminates, protein ** get rid of all ethanol	
	elute	water, pH 8.0	Elute <i>all</i> DNA from column	

DNA vs. protein amplification in NEB 5α vs. BL21

Transforming BL21(DE3)pLysS competent cells

- can express IPC protein
 - when induced by lactose analog...
 - ...details on M1D5!
- made competent by CaCl₂
 - Ca²⁺ ions attract both DNA and LPS
 - heat shock
- in exponential growth phase, $OD_{600} = 0.4-0.8$
- handle very gently, or will lyse
 - on ice all the time, and with chilled solutions
 - not vortexed
- Cam (chloramphenicol) resistant E. coli strain
 - Amp (ampicillin) resistant if transformed with pRSET-IPC

A few brief notes on *E. coli* growth curve

- exponential phase
 - binary fission
 - OD600 ~ 0.4 0.8
 - machinery ready
- OD ≠ absorbance
 - -turbidity, light scatter
 - _ -E. coli, don't absorb at 600nm

-600nm safe wavelength UV damages DNA

Bacterial Transformation

Transformation controls & expected outcomes BL21+plasmid=AMP+CAM

sample	expectation / what if?	role	
no DNA	no colony. W-contamination -given LB agar plate with wrong antibiotics	negative	
control	what if noneyrews -killed bacteria -wrong antibiotic -poor DNA quality or concentration	positive	
your X#Z or wt IPC	what if X#Z << control? -transformation efficiency -killed bacteria -wrong antibiotic -poor_DNA quality_or_concentration, min	experimental	

prep DNA

Today in lab:

- Obtain BL21(DE3)pLysS in mid-log phase and make them prepare them for transformation
- Isolate mutant DNA by Qiagen mini-prep X#Z #1, X#Z #2
- Transform your competent cells with:
 X#Z #1, X#Z #2, wt IPC, or no DNA
- Prepare X#Z #1 and X#Z #2 for sequencing
- Count colonies from X#Z plate

Methods section tips

- Use subsections with descriptive titles
 - Put in logical order
 - Begin with topic sentence
- Use clear and concise full sentences
 - Avoid tables and lists
- Use the most flexible units
 - Write concentration rather than volume

Homework due M1D6

- Methods M1D3-M1D5: SDM, Prep of expression system, protein induction
 - Eliminate 109 specific details
 - Report concentrations (NOT volumes)
 - Do not include details about tubes and water
 - Avoid repeating information
 - Use sub-section titles
 - Include topic sentences in each section

Course 20 | Course 7 | Course 5 | Course 10B | Course 6-7

2/25 4:30-5:30 56-614

Present your research to a variety of undergrads and get a UROP!

Refreshments will be served!

RSVP at: https://goo.gl/A69WLQ

Email questions to biotech-undergrad-officers@mit.edu

Sponsored by:

You are invited to a BE / "Course 20"

Spring Term Open House

for faculty, staff & undergraduate students.

Friday, February 26, 2016

Between 2:30pm and 4:30pm-stop by anytime, stay as long as you like

Room 16-341

Come for refreshments, good company and BE swag!

