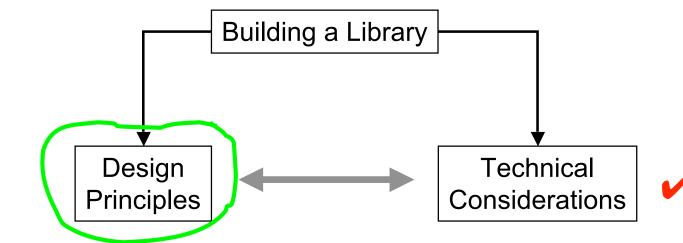
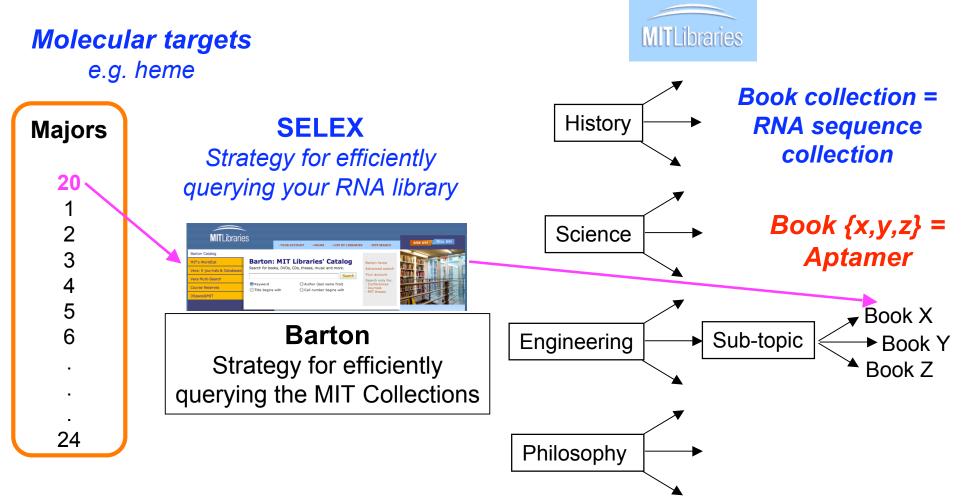
Module Overview


Day	Lecture	Lab
1	Introduction	DNA library synthesis (PCR)
2	SELEX I: Building a Library	DNA library purification (agarose gel electrophoresis)
3	SELEX II: Selecting RNA with target functionality	RNA library synthesis (<i>In vitro</i> transcription = IVT)
4	SELEX III: Technical advances & problem-solving	RNA purification and heme affinity selection
5	Characterizing aptamers	RNA to DNA by RT-PCR
6	Introduction to porphyrins: chemistry & biology	Post-selection IVT Journal Club 1
7	Aptamer applications in biology & technology	Aptamer binding assay
8	Aptamers as therapeutics	Journal Club 2

SELEX II

Selecting RNA with target functionality

20.109 Lecture 3 11 February, 2010


The RNA Library

- One library per target **or** one library for all targets
- Balance between "useful" and "useless" library members
- Maximizing "useful" collection within space constraints
- Now, let's think about what we want in our library!

- Stability during storage
- Synthesizing library at reasonable costs
- Availability of efficient methods for manipulating library

One master library or many libraries?

 Known target with a general idea about what its partner RNA should look like --> "custom build" library

• In absence of this data, build "generic" library

Library design principles

Co-optimize several competing variables:

• Diversity

- Maximize the number of distinct RNA sequences present

Space limitations

- Maximize the total number of RNA molecules present
- Practical limitations exist (i.e. How much RNA can you reasonably prepare?)

Representation

- Each possible RNA sequence is present at least once

Adaptability

- Have an easy way for increasing the representation of "popular" RNA molecules = SELEX!
- Easily replenished: Chemical synthesis; PCR; *in vitro* transcription

Diversity

- How can you increase diversity in your RNA library?
 - Increase:
 - The length of the variable region;
 - The number of nucleotides from which to choose;
 - The molar quantity of library available (sometimes)
- How do you calculate your library diversity?
 - Distinguish theoretical versus actual

Calculating theoretical diversity

- Let's fix the nucleotides available = 4 (A, G, T, C)
 - 8 nucleotide variable region:
 - Maximum Diversity = Number of distinct sequences possible
 - = $(4)^8 \sim 6.6 \times 10^4$ unique sequences
 - 20 nucleotide variable region:
 - Maximum Diversity = $(4)^{20} \sim 1 \ge 10^{12}$ unique sequences possible!
 - 50 nucleotide variable region:
 - Maximum Diversity = $(4)^{50} \sim 1.3 \times 10^{30}$ unique sequences possible!!
- Enormous theoretical diversity possible with nucleic acid libraries!
 - 8 nucleotides (assuming a 5th nucleotide option):
 - Maximum Diversity = $(5)^8$ = 4 x 10⁵ unique sequences possible

Alas, there's only so much practical and affordable space for your library

 How many unique sequences can be represented in this space?

The Avogadro Constant: = 6.022 x 10²³ molecules/mol

 $(1 \text{ nmol} = 1 \text{ x} 10^{-9} \text{ mol})$

Number of molecules in 1 nmol $\sim (1 \times 10^{-9} \times 6.022 \times 10^{23})$

~ 6 x 10¹⁴ molecules!

Base Pricing		ATED DNA OLOGIES
Synthesis Scale	Price	
25 nmole DNA Oligo	\$0.35 USD / Base	Order
100 nmole DNA oligo	\$0.55 USD / Base	Order
250 nmole DNA oligo	\$0.95 USD / Base	Order
1 µmole DNA oligo	\$1.95 USD / Base	Order
5 µmole DNA oligo	\$9.50 USD / Base	Order
10 µmole DNA oligo	\$17.50 USD / Base	Order

1 µmol scale synthesis

- Nice compromise between cost and library mass obtained
- On larger scale, downstream steps in library prep become limiting
- From this scale synthesis:
 - Obtain ~ 1 nmol full-length, useable library

So, what size library (diversity) fits comfortably into the practical space available?

- Total space = 6 x 10¹⁴ molecules
- 8 nucleotide variable region:
 - Number of distinct sequences possible
 - $= (4)^8 \sim 6.6 \times 10^4$ unique sequences
- 20 nucleotide variable region:
 - Maximum Diversity = $(4)^{20} \sim 1 \times 10^{12}$ unique sequences possible!
- 50 nucleotide variable region:
 - Maximum Diversity = $(4)^{50} \sim 1.3 \times 10^{30}$ unique sequences possible!!
- In which of these libraries can the theoretical diversity be fully represented given our space constraints?

Representation

- Total space = 6 x 10¹⁴ molecules
- 8 nucleotide variable region:
 - Maximum Diversity = $(4)^8 \sim 6.6 \times 10^4$ unique sequences
 - Each sequence present @ (6 x $10^{14}/6.6 \times 10^{4}$) ~ 1 x 10^{10} copies/library
- 20 nucleotide variable region:
 - Maximum Diversity = $(4)^{20} \sim 1 \times 10^{12}$ unique sequences possible!
 - Each sequence present @ (6 x $10^{14}/1 \times 10^{12}$) ~ 6 x 10^2 copies/library
- 50 nucleotide variable region:
 - Maximum Diversity = $(4)^{50} \sim 1.3 \times 10^{30}$ unique sequences possible!!
 - Each sequence present @ (6 x $10^{14}/1.3 \times 10^{30}$): 0 or 1 copy/library!

How do you co-optimize across these parameters

Scenario I

- Maximize diversity
- Achieve full representation by ensuring you have the available space.
 - Choose 50-nucleotide variable region (assume 100-base oligo)
 - Require ~ 3×10^5 metric tons of oligonucleotide!!!
 - And that's to have each possible sequence represented once!
 - How much diversity is enough?
 - 8, 20 or 50 (or more?)-nucleotide variable region?
 - Can you determine this ahead of time for every possible target?

How do you co-optimize across these parameters

Scenario II

- Set space limit (i.e. reasonable cost)
- Maximize diversity (within this limit)
- Preserve representation at some acceptable (read: arbitrary) limit?
 - You'll saturate your space at ~ 23-nucleotide variable region (~ 10¹⁴ maximum diversity)
 - (Recall: For 1 µmol synthesis (yield: ~1 nmol) --> ~ 10¹⁴ molecules present)
 - Is this enough diversity?

How do you co-optimize across these parameters

Scenario III

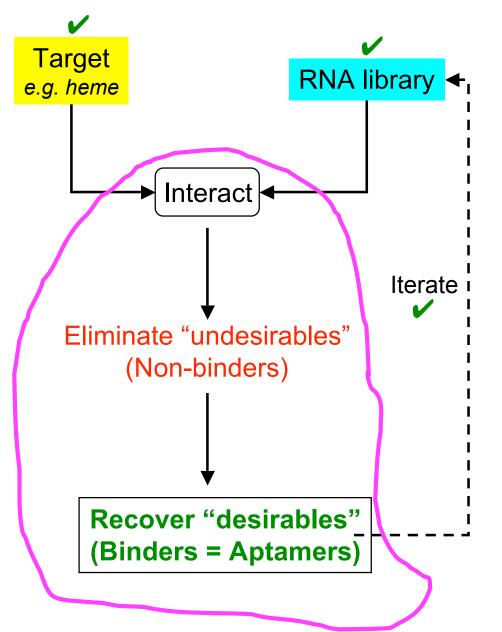
- Set space limit (i.e. reasonable cost)
- Maximize diversity
- Sacrifice representation
 - A given sequence present only once (if at all) in library
 - Is this problematic?
 - What does this mean for library reuse?
 - Sampling without replacement

What's the best strategy for assembling your library?

Scenario I

- Maximize diversity
- Achieve full representation by ensuring you have the available space

Scenario II


- Set space limit (i.e. reasonable cost)
- Maximize diversity (within this limit)
- Preserve representation at some acceptable (read: arbitrary) limit?

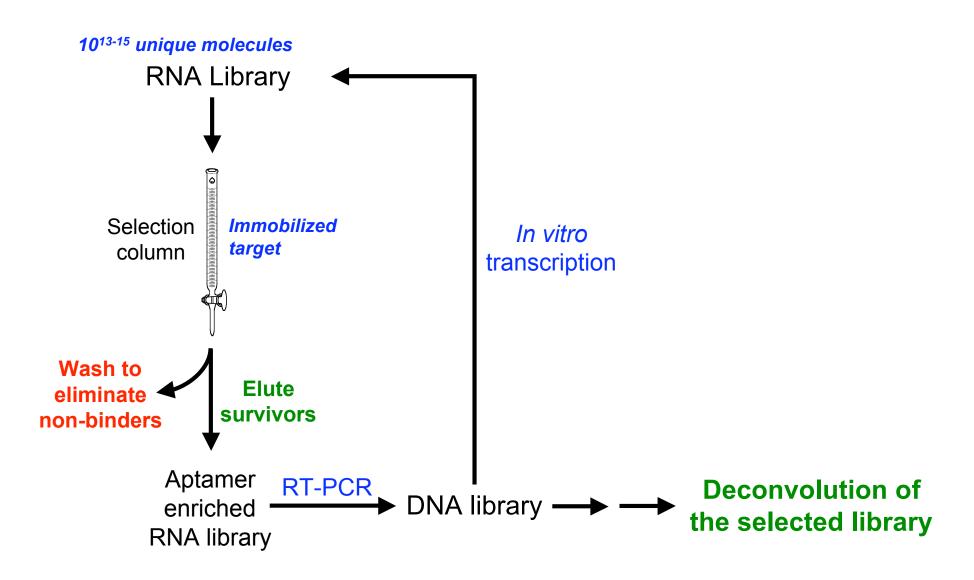
Scenario III

- Set space limit (i.e. reasonable cost)
- Maximize diversity
- Sacrifice representation

The Answer? In the end, it's really up to you!

SELEX: The process (simply)

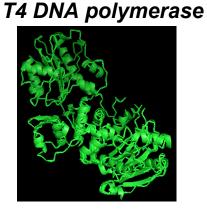
Now, that we understand:


- Target selection
- Library construction & manipulation
- How do we enrich for binders?

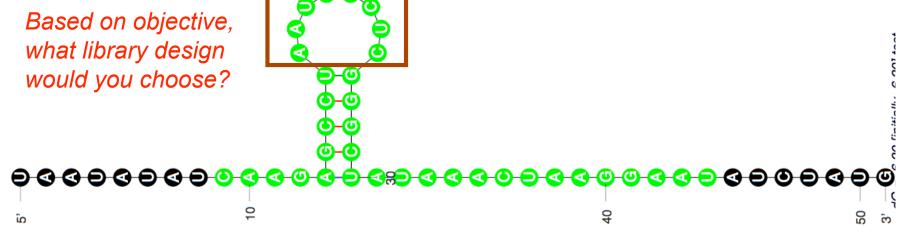
- How do we put this all together into a workflow?

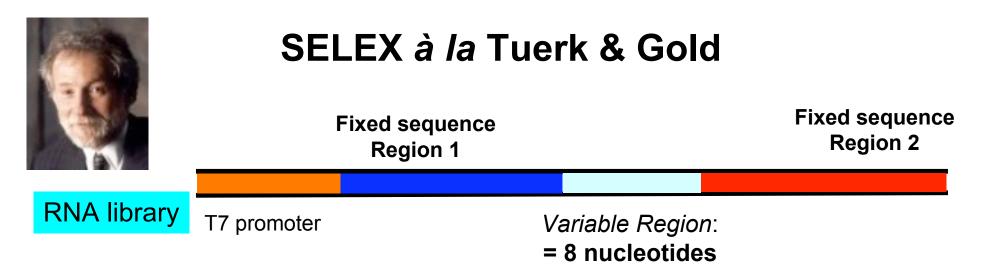
Enriching your library for binders

- Need a partitioning strategy:
 - Separate target bound RNA from unbound fraction
 - Selectively release target bound RNA
- Most commonly involves immobilizing target on:
 - A membrane (e.g. nitrocellulose)
 - Solid support (usually some kind of bead)
 - Column format
 - Magnetic separation
- Other approaches, for e.g.:
 - Electrophoretic methods to separate {RNA:target complex} from free RNA [J. Club paper on this].


Putting it all together: A typical SELEX workflow

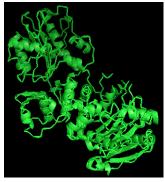
Target


SELEX à la Tuerk & Gold


Structure for residues 1-388 from the PDB (www.rcsb.org)

- Target known to interact with RNA from prior work
 - Sequence below found in the mRNA encoding the T4 DNA polymerase
 - Regulatory mechanism:
 - T4 DNA polymerase binds its own mRNA decreases its own synthesis
- 8 nucleotides [AAUAACUC] are critical for the interaction

What underlies the preference for this loop sequence?


C. Tuerk and L. Gold; Science; 249 (4968), 505-510, 1990

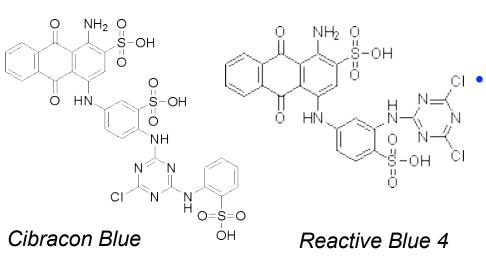
- Total space = 6 x 10¹⁴ molecules
- 8 nucleotide variable region:
 - Maximum Diversity = $(4)^8 \sim 65$, 556 unique sequences
 - Each sequence present @ $(6 \times 10^{14}/\sim 6.6 \times 10^{4}) \sim 1 \times 10^{10}$ copies/library
 - The known RNA target present @ 2 in 10⁵ molecules!

T4 DNA polymerase

Structure for residues 1-388 from the PDB (www.rcsb.org)

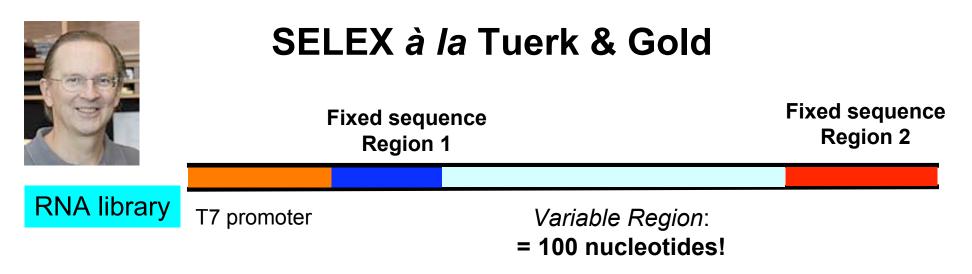
SELEX à la Tuerk & Gold

Immobilize on nitrocellulose


- Works well for many protein targets
- Advantages
 - Very easy and inexpensive!
 - Well-developed and straightforward protocols available
- *Disadvantages*
 - Protein can denature during immobilization step
 - Selected aptamers cannot recognize native protein
 - Not all proteins stick strongly enough to survive washing steps to remove unbound library

C. Tuerk and L. Gold; Science; 249 (4968), 505-510, 1990

SELEX à la Ellington & Szostak



www.sigmaaldrich.com

- Discover RNA binding to small molecule organic dyes
 - No prior knowledge of their RNA binding capacity
- Can RNA specifically interacting with these molecules be discovered?

Based on objective, what library design would you choose?

- Total space ~ 6 x 10¹⁴ molecules
- 100 nucleotide variable region:
 - Maximum Diversity = $(4)^{100} \sim 2 \times 10^{60}$ unique sequences possible!
 - Each sequence present @ $(6 \times 10^{14}/2 \times 10^{60})$: Absent or 1copy/library
 - The known RNA target present @ ??? frequency

O HN

Cibracon Blue

SELEX à la Ellington & Szostak

Immobilize on agarose beads

- Very common strategy
 - Low molecular weight compounds
 - Macromolecules (e.g. proteins)
- , -он Adv о мн –

S-OH

CI

ї S-ОН

NH2

ΊH

Reactive Blue 4

www.sigmaaldrich.com

N

N

O=S=O

CI

ÓН

Advantages

- Extremely convenient and adaptable to many formats (e.g. column)
- Better define how your target is displayed for binding (though not completely)

Disadvantages

- Not all immobilized molecules will be able to interact (even with its cognate RNA)
- Immobilized form recognized is distinct from the free form of the target

Summary

- Developed a conceptual framework for SELEX
- Library diversity
 - Calculations
 - Maximizing diversity within technical constraints
 - Choosing the appropriate library for your needs!
- Examined some key steps involved in the process:
 - Target selection
 - RNA library construction
 - Partitioning strategies
- SELEX can be successfully executed on:
 - Very distinct targets
 - Using distinct library design (diversity, representation, etc)
 - Using distinct partitioning strategies
 - Fairly robust and generally applicable strategy