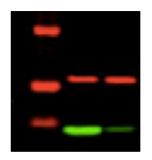
M2D2:

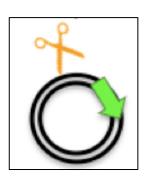
Begin Western blot protein analysis and choose system conditions

03/11/2016

Key assignments of M2



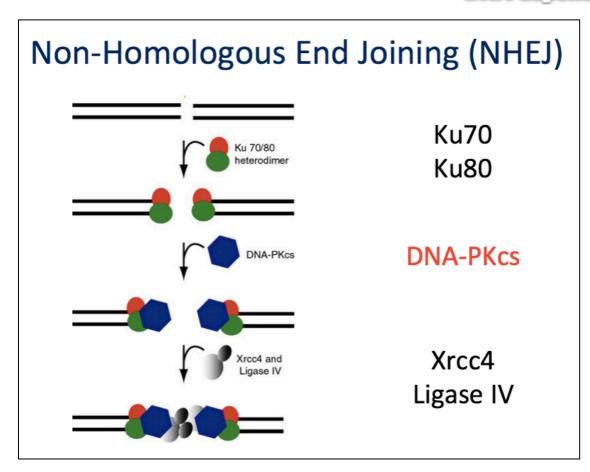
- Journal club presentation
 - 10%
 - individual
 - in class at 1pm on Friday, March 18 or April 8

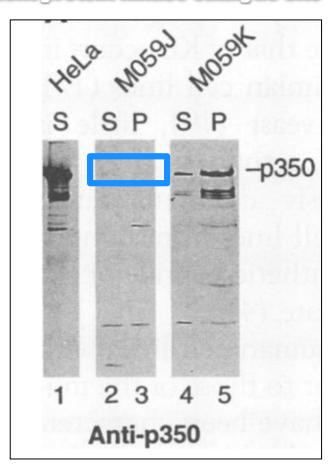

- Research article
 - 25%
 - individual
 - due 5pm on Monday, April 18
 - no draft/revision this time around

In lab today

1. Verify cell lines by Western blot protein analysis

- Lyse M059K and M059J cells
- Measure protein concentration
- Separate proteins by SDS-PAGE
- Transfer proteins onto nitrocellulose membrane

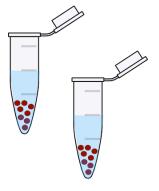



2. Pick DNA double strand break type

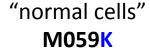
- Study DNA repair reporter of NHEJ
- Pick restriction enzymes' cut ends

1. Verify M059J is missing DNA-PKcs

DNA-dependent protein kinase catalytic site

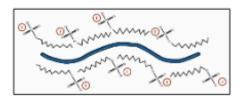


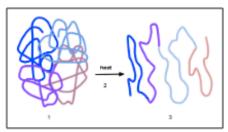
1. Verify cell lines by Western blot protein analysis

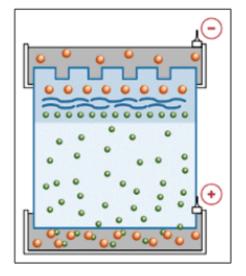

Lyse M059K and M059J cells

"DNA repair-deficient cells" **M059**J

RIPA buffer for mammalian cell lysis:

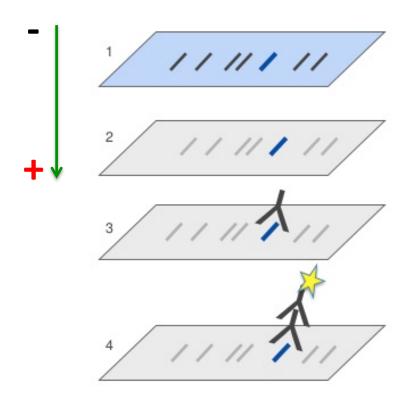

- detergents:
 - 1% NP-40 (nonyl phenoxypolyethoxylethanol)
 - 0.1% SDS (sodium dodecyl sulfate)
 - 0.5% sodium deoxycholate
- protease inhibitors stop/stall protein degradation
- Tris-HCl, pH 7.4 + NaCl physiological levels of pH and salts


1. Verify cell lines by Western blot protein analysis


SDS-PAGE separates proteins by size

sodium dodecyl sulfate – polyacrylamide gel electrophoresis

carcinogenic



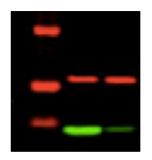
- Laemmli sample buffer / loading dye:
 - + SDS: detergent denatures proteins, coats proteins with negative charges
 - + β-mercaptoethanol reduces disulfide bonds
 - + bromophenol blue to follow front of migration
 - + glycerol
- boiling denatures higher-order structures
- TGS buffer :sandwiched proteins form tight bands
 - + Tris-HCl
 - + SDS
 - + glycine

Western blot workflow

- 1. Protein separation by SDS-PAGE
 - HiMark stained ladder bands: 31 460 kDa
- 2. Protein transfer to nitrocellulose membrane
 - high affinity for proteins
 - immobilizes proteins
- 3. (Blocking and) probing with primary antibodies specific to
 - DNA-PKcs p350 subunit
 - alpha-tubulin
- 4. Probing with labeled secondary antibodies specific to primary antibodies
- 5. Image fluorescence signal

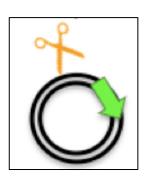
Suite of antibodies for *LI-COR* Western blot

protein of interest	▲ DNA-PKcs	tubulin
primary antibody	mouse anti-human anti-DNA-PK	rabbit anti-human anti-tubulin
secondary antibody	k goat anti-mouse	donkey anti-rabbit
fluorescent dye IR wavelength	800 nm	680 nm
pseudo-color	green	ed red
molecular weight	~ 465 kDa	~ 50 kDa


top of membrane

bottom of membrane

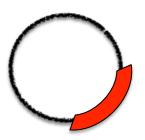
1. Verify M059J is missing DNA-PKcs by *LI-COR* Western blot M2D3

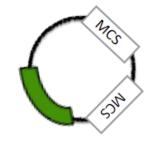

MW M059 **J** M059 K 460 kDa p350 subunit 117 kDa 55 kDa also in red channel!

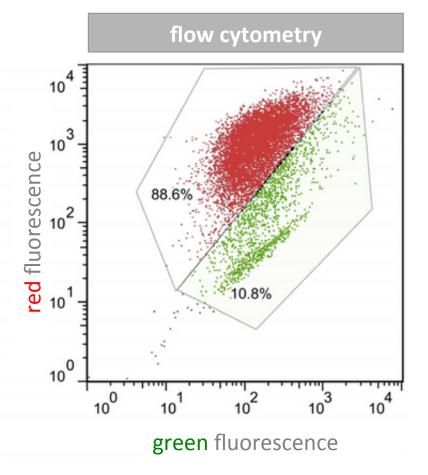
In lab today

1. Verify cell lines by Western blot protein analysis

- Lyse M059K and M059J cells
- Measure protein concentration
- Separate proteins by SDS-PAGE
- Transfer proteins onto nitrocellulose membrane

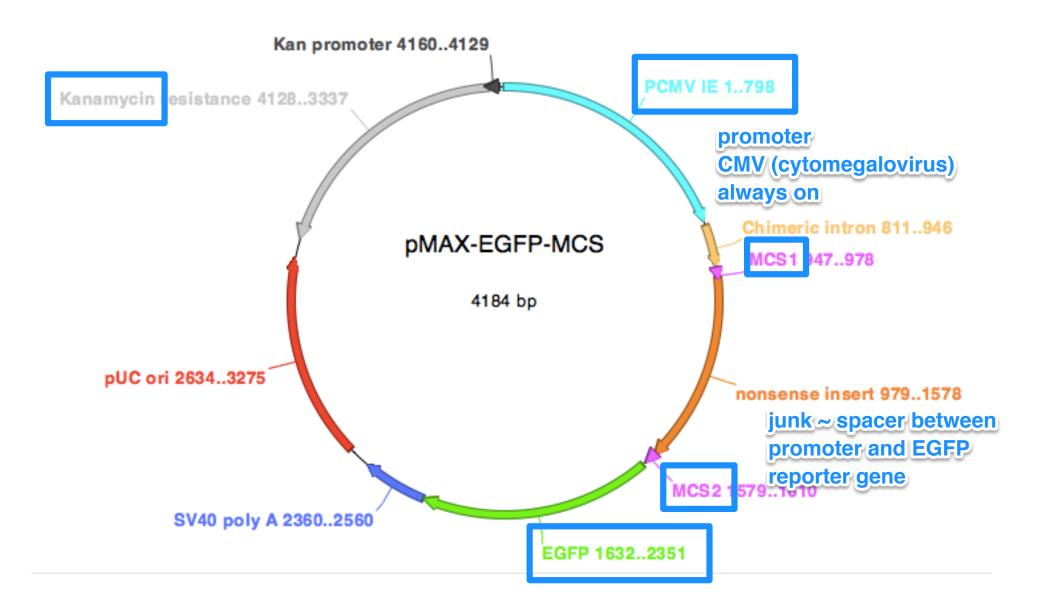

2. Pick DNA double strand break type


- Study DNA repair reporter of NHEJ
- Pick restriction enzymes' cut ends


M2: Quantify NHEJ in fibroblasts, DNA repair capacity by host cell reactivation

"normal cells" M059K or
 "DNA repair-deficient cells" M059J
 (= no p350 subunit)

 transfect with DNA repair reporter cuts with blunt vs. overhang ends



repair => green fluorescence

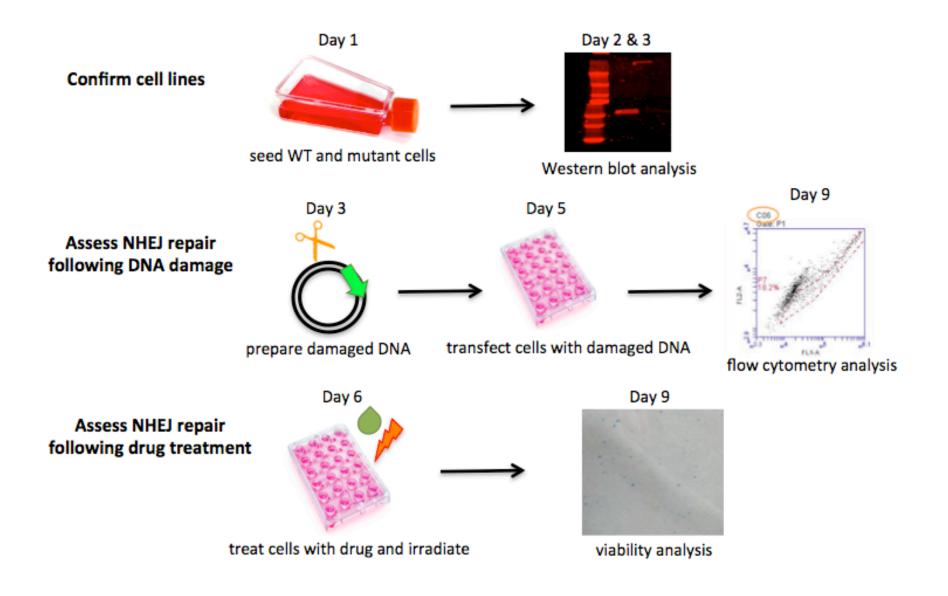
2. Pick DNA double strand break type

Study DNA repair reporter of NHEJ

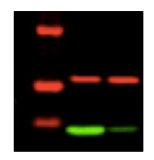
2. Pick DNA double strand break type

Pick restriction enzymes' cut ends

ends	example	
blunt	5′GTTT [*] AAAC3′ 3′CAAA <mark>,</mark> TTTG5′	PmeI
5' overhang 5' 3' 3' 5'	5′ G [™] A A T T C 3′ 3′ C T T A A _x G 5′	EcoRI
3' overhang 5' 3' 3' 5'	5′CTGCA [*] G3′ 3′G _A CGTC5′	PstI

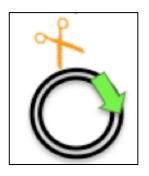

How efficient is NHEJ at repairing different types of double-stranded breaks (DSBs)?

vote!


damage type	NHEJ repair capacity rank	
blunt ends	4 votes for most efficient NHEJ repair	
compatible overhangs —— *	6	
incompatible overhangs —— *		

^{*} and sequence mismatch

M2 experimental overview



In lab today

- 1. Verify cell lines by Western blot protein analysis
 - Lyse M059J and M059K cells
 - Measure protein concentration
 - Separate proteins by SDS-PAGE
 - Transfer proteins onto nitrocellulose membrane

Faculty will add blocking buffer tonight

- 2. Pick DNA double strand break type
 - Study DNA repair reporter of NHEJ
 - Pick restriction enzymes' cut ends

... and for M2D3: digest calculations